Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,260 Bytes
2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c cc97bdc 218ae0c 2c9ddc1 cc97bdc 218ae0c cc97bdc 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 4c21e38 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 218ae0c 2c9ddc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
from __future__ import annotations
import os
import random
from collections import defaultdict
from importlib.resources import files
import torch
from torch.nn.utils.rnn import pad_sequence
import jieba
from pypinyin import lazy_pinyin, Style
# seed everything
def seed_everything(seed=0):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# helpers
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
# tensor helpers
def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa: F722 F821
if not exists(length):
length = t.amax()
seq = torch.arange(length, device=t.device)
return seq[None, :] < t[:, None]
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): # noqa: F722 F821
max_seq_len = seq_len.max().item()
seq = torch.arange(max_seq_len, device=start.device).long()
start_mask = seq[None, :] >= start[:, None]
end_mask = seq[None, :] < end[:, None]
return start_mask & end_mask
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa: F722 F821
lengths = (frac_lengths * seq_len).long()
max_start = seq_len - lengths
rand = torch.rand_like(frac_lengths)
start = (max_start * rand).long().clamp(min=0)
end = start + lengths
return mask_from_start_end_indices(seq_len, start, end)
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722
if not exists(mask):
return t.mean(dim=1)
t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device))
num = t.sum(dim=1)
den = mask.float().sum(dim=1)
return num / den.clamp(min=1.0)
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
# Split each string into words
list_words = [t.split() for t in text]
# Convert words to tensors (assuming words are already in byte format)
list_tensors = [torch.tensor([*bytes(" ".join(words), "UTF-8")]) for words in list_words] # ByT5 style
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
return text
def list_str_to_idx(
text: list[str] | list[list[str]],
vocab_map: dict[str, int], # {word: idx}
padding_value=-1,
) -> int["b nt"]: # noqa: F722
# Split each string into words if not already split
if isinstance(text[0], str):
list_words = []
for t in text:
# Split the text by triple spaces
parts = t.split(" ")
words = []
for i, part in enumerate(parts):
# Split each part into words (by single spaces)
words.extend(part.split())
# Add a space token if there are more parts (i.e., triple spaces were present)
if i < len(parts) - 1:
words.append(" ") # Add a space token
list_words.append(words)
else:
list_words = text
# Convert words to their corresponding indices using vocab_map
list_idx_tensors = [
torch.tensor([vocab_map.get(word, 0) for word in words]) # Use 0 for unknown words
for words in list_words
]
# Pad the sequences
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
return text
# Get tokenizer
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
"""
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
- "char" for char-wise tokenizer, need .txt vocab_file
- "byte" for utf-8 tokenizer
- "custom" if you're directly passing in a path to the vocab.txt you want to use
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
- if use "char", derived from unfiltered character & symbol counts of custom dataset
- if use "byte", set to 256 (unicode byte range)
"""
if tokenizer in ["pinyin", "char"]:
tokenizer_path = "data/Emilia_ZH_EN_pinyin/vocab.txt"
with open(tokenizer_path, "r", encoding="utf-8") as f:
vocab_char_map = {}
for i, char in enumerate(f):
vocab_char_map[char[:-1]] = i
vocab_size = len(vocab_char_map)
assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"
elif tokenizer == "byte":
vocab_char_map = None
vocab_size = 256
elif tokenizer == "custom":
with open(dataset_name, "r", encoding="utf-8") as f:
vocab_char_map = {}
for i, char in enumerate(f):
vocab_char_map[char[:-1]] = i
vocab_size = len(vocab_char_map)
return vocab_char_map, vocab_size
# convert char to pinyin
def convert_char_to_pinyin(text_list, polyphone=True):
final_text_list = []
god_knows_why_en_testset_contains_zh_quote = str.maketrans(
{"β": '"', "β": '"', "β": "'", "β": "'"}
) # in case librispeech (orig no-pc) test-clean
custom_trans = str.maketrans({";": ","}) # add custom trans here, to address oov
for text in text_list:
char_list = []
text = text.translate(god_knows_why_en_testset_contains_zh_quote)
text = text.translate(custom_trans)
for seg in jieba.cut(text):
seg_byte_len = len(bytes(seg, "UTF-8"))
if seg_byte_len == len(seg): # if pure alphabets and symbols
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
char_list.append(" ")
char_list.extend(seg)
elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
for c in seg:
if c not in "γοΌγοΌοΌοΌοΌγγγγββ¦":
char_list.append(" ")
char_list.append(c)
else: # if mixed chinese characters, alphabets and symbols
for c in seg:
if ord(c) < 256:
char_list.extend(c)
else:
if c not in "γοΌγοΌοΌοΌοΌγγγγββ¦":
char_list.append(" ")
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
else: # if is zh punc
char_list.append(c)
final_text_list.append(char_list)
return final_text_list
# filter func for dirty data with many repetitions
def repetition_found(text, length=2, tolerance=10):
pattern_count = defaultdict(int)
for i in range(len(text) - length + 1):
pattern = text[i : i + length]
pattern_count[pattern] += 1
for pattern, count in pattern_count.items():
if count > tolerance:
return True
return False
|