Spaces:
Running
on
Zero
Running
on
Zero
Update model/utils.py
Browse files- model/utils.py +30 -7
model/utils.py
CHANGED
@@ -76,21 +76,44 @@ def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d
|
|
76 |
|
77 |
return num / den.clamp(min=1.0)
|
78 |
|
79 |
-
|
80 |
-
# simple utf-8 tokenizer, since paper went character based
|
81 |
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
|
82 |
-
|
|
|
|
|
|
|
|
|
83 |
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
|
84 |
return text
|
85 |
|
86 |
-
|
87 |
-
# char tokenizer, based on custom dataset's extracted .txt file
|
88 |
def list_str_to_idx(
|
89 |
text: list[str] | list[list[str]],
|
90 |
-
|
91 |
padding_value=-1,
|
92 |
) -> int["b nt"]: # noqa: F722
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
|
95 |
return text
|
96 |
|
|
|
76 |
|
77 |
return num / den.clamp(min=1.0)
|
78 |
|
|
|
|
|
79 |
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
|
80 |
+
# Split each string into words
|
81 |
+
list_words = [t.split() for t in text]
|
82 |
+
|
83 |
+
# Convert words to tensors (assuming words are already in byte format)
|
84 |
+
list_tensors = [torch.tensor([*bytes(" ".join(words), "UTF-8")]) for words in list_words] # ByT5 style
|
85 |
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
|
86 |
return text
|
87 |
|
|
|
|
|
88 |
def list_str_to_idx(
|
89 |
text: list[str] | list[list[str]],
|
90 |
+
vocab_map: dict[str, int], # {word: idx}
|
91 |
padding_value=-1,
|
92 |
) -> int["b nt"]: # noqa: F722
|
93 |
+
# Split each string into words if not already split
|
94 |
+
if isinstance(text[0], str):
|
95 |
+
list_words = []
|
96 |
+
for t in text:
|
97 |
+
# Split the text by triple spaces
|
98 |
+
parts = t.split(" ")
|
99 |
+
words = []
|
100 |
+
for i, part in enumerate(parts):
|
101 |
+
# Split each part into words (by single spaces)
|
102 |
+
words.extend(part.split())
|
103 |
+
# Add a space token if there are more parts (i.e., triple spaces were present)
|
104 |
+
if i < len(parts) - 1:
|
105 |
+
words.append(" ") # Add a space token
|
106 |
+
list_words.append(words)
|
107 |
+
else:
|
108 |
+
list_words = text
|
109 |
+
|
110 |
+
# Convert words to their corresponding indices using vocab_map
|
111 |
+
list_idx_tensors = [
|
112 |
+
torch.tensor([vocab_map.get(word, 0) for word in words]) # Use 0 for unknown words
|
113 |
+
for words in list_words
|
114 |
+
]
|
115 |
+
|
116 |
+
# Pad the sequences
|
117 |
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
|
118 |
return text
|
119 |
|