File size: 2,786 Bytes
e76f2f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread

# Load model and tokenizer
model_name = "GoofyLM/BrainrotLM-Assistant"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    device_map="auto",
    torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Set pad token if missing
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

# Define a custom chat template if one is not available
if tokenizer.chat_template is None:
    # Basic ChatML-style template
    tokenizer.chat_template = "{% for message in messages %}\n{% if message['role'] == 'system' %}<|system|>\n{{ message['content'] }}\n{% elif message['role'] == 'user' %}<|user|>\n{{ message['content'] }}\n{% elif message['role'] == 'assistant' %}<|assistant|>\n{{ message['content'] }}\n{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}<|assistant|>\n{% endif %}"

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # Build conversation messages
    messages = [{"role": "system", "content": system_message}]
    
    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    
    messages.append({"role": "user", "content": message})
    
    # Format prompt using chat template
    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    # Set up streaming
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    
    # Configure generation parameters
    do_sample = temperature > 0 or top_p < 1.0
    generation_kwargs = dict(
        **inputs,
        streamer=streamer,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        do_sample=do_sample,
        pad_token_id=tokenizer.pad_token_id
    )
    
    # Start generation in separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    # Stream response
    response = ""
    for token in streamer:
        response += token
        yield response

# Create Gradio interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Slider(1, 2048, value=72, label="Max new tokens"),
        gr.Slider(0.1, 4.0, value=0.7, label="Temperature"),
        gr.Slider(0.1, 1.0, value=0.95, label="Top-p (nucleus sampling)"),
    ],
)

if __name__ == "__main__":
    demo.launch()