Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
3 |
+
import torch
|
4 |
+
from threading import Thread
|
5 |
+
|
6 |
+
# Load model and tokenizer
|
7 |
+
model_name = "GoofyLM/BrainrotLM-Assistant"
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name,
|
10 |
+
device_map="auto",
|
11 |
+
torch_dtype=torch.float16
|
12 |
+
)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
|
15 |
+
# Set pad token if missing
|
16 |
+
if tokenizer.pad_token is None:
|
17 |
+
tokenizer.pad_token = tokenizer.eos_token
|
18 |
+
|
19 |
+
# Define a custom chat template if one is not available
|
20 |
+
if tokenizer.chat_template is None:
|
21 |
+
# Basic ChatML-style template
|
22 |
+
tokenizer.chat_template = "{% for message in messages %}\n{% if message['role'] == 'system' %}<|system|>\n{{ message['content'] }}\n{% elif message['role'] == 'user' %}<|user|>\n{{ message['content'] }}\n{% elif message['role'] == 'assistant' %}<|assistant|>\n{{ message['content'] }}\n{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}<|assistant|>\n{% endif %}"
|
23 |
+
|
24 |
+
def respond(
|
25 |
+
message,
|
26 |
+
history: list[tuple[str, str]],
|
27 |
+
system_message,
|
28 |
+
max_tokens,
|
29 |
+
temperature,
|
30 |
+
top_p,
|
31 |
+
):
|
32 |
+
# Build conversation messages
|
33 |
+
messages = [{"role": "system", "content": system_message}]
|
34 |
+
|
35 |
+
for user_msg, assistant_msg in history:
|
36 |
+
if user_msg:
|
37 |
+
messages.append({"role": "user", "content": user_msg})
|
38 |
+
if assistant_msg:
|
39 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
40 |
+
|
41 |
+
messages.append({"role": "user", "content": message})
|
42 |
+
|
43 |
+
# Format prompt using chat template
|
44 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
45 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
46 |
+
|
47 |
+
# Set up streaming
|
48 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
49 |
+
|
50 |
+
# Configure generation parameters
|
51 |
+
do_sample = temperature > 0 or top_p < 1.0
|
52 |
+
generation_kwargs = dict(
|
53 |
+
**inputs,
|
54 |
+
streamer=streamer,
|
55 |
+
max_new_tokens=max_tokens,
|
56 |
+
temperature=temperature,
|
57 |
+
top_p=top_p,
|
58 |
+
do_sample=do_sample,
|
59 |
+
pad_token_id=tokenizer.pad_token_id
|
60 |
+
)
|
61 |
+
|
62 |
+
# Start generation in separate thread
|
63 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
64 |
+
thread.start()
|
65 |
+
|
66 |
+
# Stream response
|
67 |
+
response = ""
|
68 |
+
for token in streamer:
|
69 |
+
response += token
|
70 |
+
yield response
|
71 |
+
|
72 |
+
# Create Gradio interface
|
73 |
+
demo = gr.ChatInterface(
|
74 |
+
respond,
|
75 |
+
additional_inputs=[
|
76 |
+
gr.Textbox(value="You are BrainrotLM an AI assistant.", label="System message"),
|
77 |
+
gr.Slider(1, 2048, value=72, label="Max new tokens"),
|
78 |
+
gr.Slider(0.1, 4.0, value=0.7, label="Temperature"),
|
79 |
+
gr.Slider(0.1, 1.0, value=0.95, label="Top-p (nucleus sampling)"),
|
80 |
+
],
|
81 |
+
)
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
demo.launch()
|