emotion-llm / app.py
Garvitj's picture
Update app.py
6c00321 verified
import gradio as gr
from huggingface_hub import InferenceClient
import gradio as gr
import numpy as np
import cv2
import librosa
import moviepy.editor as mp
import speech_recognition as sr
import tempfile
import wave
import os
import tensorflow as tf
from tensorflow.keras.preprocessing.text import tokenizer_from_json
from tensorflow.keras.models import load_model, model_from_json
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('punkt_tab')
nltk.download('wordnet')
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import pickle
import json
from tensorflow.keras.preprocessing.image import img_to_array, load_img
from collections import Counter
# Load the text model
with open('model_architecture_for_text_emotion_updated_json.json', 'r') as json_file:
model_json = json_file.read()
text_model = model_from_json(model_json)
text_model.load_weights("model_for_text_emotion_updated(1).keras")
# Load the encoder and scaler for audio
with open('encoder.pkl', 'rb') as file:
encoder = pickle.load(file)
with open('scaler.pkl', 'rb') as file:
scaler = pickle.load(file)
# Load the tokenizer for text
with open('tokenizer.json') as json_file:
tokenizer_json = json.load(json_file)
tokenizer = tokenizer_from_json(tokenizer_json)
# Load the audio model
audio_model = load_model('my_model.h5')
# Load the image model
image_model = load_model('model_emotion.h5')
# Initialize NLTK
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
# Preprocess text function
def preprocess_text(text):
tokens = nltk.word_tokenize(text.lower())
tokens = [word for word in tokens if word.isalnum() and word not in stop_words]
lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens]
return ' '.join(lemmatized_tokens)
# Extract features from audio
# Extract features from audio
def extract_features(data, sample_rate):
result = []
try:
zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T, axis=0)
result.append(zcr)
stft = np.abs(librosa.stft(data))
chroma_stft = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T, axis=0)
result.append(chroma_stft)
mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sample_rate).T, axis=0)
result.append(mfcc)
rms = np.mean(librosa.feature.rms(y=data).T, axis=0)
result.append(rms)
mel = np.mean(librosa.feature.melspectrogram(y=data, sr=sample_rate).T, axis=0)
result.append(mel)
# Ensure all features are numpy arrays
result = [np.atleast_1d(feature) for feature in result]
# Stack features horizontally
return np.hstack(result)
except Exception as e:
print(f"Error extracting features: {e}")
return np.zeros(1) # Return a default feature array if extraction fails
# Predict emotion from text
def find_emotion_using_text(sample_rate, audio_data, recognizer):
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
temp_audio_path = temp_audio_file.name
with wave.open(temp_audio_path, 'w') as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio_data.tobytes())
with sr.AudioFile(temp_audio_path) as source:
audio_record = recognizer.record(source)
text = recognizer.recognize_google(audio_record)
pre_text = preprocess_text(text)
title_seq = tokenizer.texts_to_sequences([pre_text])
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
inp1 = np.array(padded_title_seq)
text_prediction = text_model.predict(inp1)
os.remove(temp_audio_path)
max_index = text_prediction.argmax()
return mapping[max_index]
# Predict emotion from audio
def predict_emotion(audio_data):
sample_rate, data = audio_data
data = data.flatten()
if data.dtype != np.float32:
data = data.astype(np.float32)
data = data / np.max(np.abs(data))
features = extract_features(data, sample_rate)
features = np.expand_dims(features, axis=0)
if features.ndim == 3:
features = np.squeeze(features, axis=2)
elif features.ndim != 2:
raise ValueError("Features array has unexpected dimensions.")
scaled_features = scaler.transform(features)
scaled_features = np.expand_dims(scaled_features, axis=2)
prediction = audio_model.predict(scaled_features)
emotion_index = np.argmax(prediction)
num_classes = len(encoder.categories_[0])
emotion_array = np.zeros((1, num_classes))
emotion_array[0, emotion_index] = 1
emotion_label = encoder.inverse_transform(emotion_array)[0]
return emotion_label
# Preprocess image
def preprocess_image(image):
image = load_img(image, target_size=(48, 48), color_mode="grayscale")
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = image / 255.0
return image
# Predict emotion from image
def predict_emotion_from_image(image):
preprocessed_image = preprocess_image(image)
prediction = image_model.predict(preprocessed_image)
emotion_index = np.argmax(prediction)
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
return mapping[emotion_index]
# Main function to handle text, audio, and image emotion recognition
# Load the models and other necessary files (as before)
# Preprocess image (as before)
# Predict emotion from image (as before)
# Extract features from audio (as before)
# Predict emotion from text (as before)
# Predict emotion from audio (as before)
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
frame_count = 0
predictions = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Process every nth frame (to speed up processing)
if frame_count % int(frame_rate) == 0:
# Convert frame to grayscale as required by your model
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = cv2.resize(frame, (48, 48)) # Resize to match model input size
frame = img_to_array(frame)
frame = np.expand_dims(frame, axis=0) / 255.0
# Predict emotion
prediction = image_model.predict(frame)
predictions.append(np.argmax(prediction))
frame_count += 1
cap.release()
# cv2.destroyAllWindows()
# Find the most common prediction
most_common_emotion = Counter(predictions).most_common(1)[0][0]
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
return mapping[most_common_emotion]
# Process audio from video and predict emotions
def process_audio_from_video(video_path):
video = mp.VideoFileClip(video_path)
audio = video.audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
temp_audio_path = temp_audio_file.name
audio.write_audiofile(temp_audio_path)
recognizer = sr.Recognizer()
with sr.AudioFile(temp_audio_path) as source:
audio_record = recognizer.record(source)
text = recognizer.recognize_google(audio_record)
pre_text = preprocess_text(text)
title_seq = tokenizer.texts_to_sequences([pre_text])
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
inp1 = np.array(padded_title_seq)
text_prediction = text_model.predict(inp1)
os.remove(temp_audio_path)
max_index = text_prediction.argmax()
text_emotion = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}[max_index]
audio_emotion = predict_emotion((audio.fps, np.array(audio.to_soundarray())))
return text_emotion, audio_emotion, text
# Main function to handle video emotion recognition
def transcribe_and_predict_video(video):
"""
Process video for emotion detection (image, audio, text) and transcription.
(Replace process_video & process_audio_from_video with actual implementations)
"""
image_emotion = process_video(video) # Emotion from video frames
print("Image processing done.")
text_emotion, audio_emotion, extracted_text = process_audio_from_video(video) # Speech-to-text + emotions
print("Audio processing done.")
return {
"text_emotion": text_emotion,
"audio_emotion": audio_emotion,
"image_emotion": image_emotion,
"extracted_text": extracted_text,
}
# Load Zephyr-7B Model
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
client = InferenceClient(MODEL_NAME)
# # Chatbot response function
# def respond(video, history, system_message, max_tokens, temperature, top_p):
# video_path = video.name # Get the uploaded video file path
# # Process the video for emotions & text
# result = transcribe_and_predict_video(video_path)
# # Construct a system prompt with extracted emotions & text
# system_prompt = (
# f"{system_message}\n\n"
# f"Detected Emotions:\n"
# f"- Text Emotion: {result['text_emotion']}\n"
# f"- Audio Emotion: {result['audio_emotion']}\n"
# f"- Image Emotion: {result['image_emotion']}\n\n"
# f"Extracted Speech: {result['extracted_text']}"
# )
# messages = [{"role": "system", "content": system_prompt}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": result['extracted_text']})
# response = ""
# try:
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content if message.choices[0].delta else ""
# response += token
# yield response
# except Exception as e:
# yield f"Error: {str(e)}"
# # Gradio UI for video chatbot
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Video(label="Upload a Video"), # Video input
# gr.Textbox(value="You are a chatbot that analyzes emotions and responds accordingly.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
# gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
def respond(video, text_input, history):
"""Processes user input (video, text, or both) and generates a chatbot response."""
messages = []
system_prompt = "You are a chatbot that can analyze emotions from videos and respond accordingly."
print("DEBUG: Function called with video:", video)
print("DEBUG: Function called with text_input:", text_input)
print("DEBUG: Function called with history:", history)
# Handle video input safely
if video:
try:
video_path = video if isinstance(video, str) else getattr(video, "name", None)
if not video_path:
return "Error: Invalid video input."
result = transcribe_and_predict_video(video_path)
print("DEBUG: Video Analysis Result:", result)
system_prompt += f"\n\nDetected Emotions:\n"
system_prompt += f"- Text Emotion: {result['text_emotion']}\n"
system_prompt += f"- Audio Emotion: {result['audio_emotion']}\n"
system_prompt += f"- Image Emotion: {result['image_emotion']}\n\n"
system_prompt += f"Extracted Speech: {result['extracted_text']}\n"
messages.append({"role": "user", "content": result["extracted_text"]}) # Add extracted speech
except Exception as e:
return f"Error processing video: {str(e)}"
# Ensure history is a list
if isinstance(history, list):
for val in history:
if isinstance(val, (list, tuple)) and len(val) == 2:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
else:
return "Error: Chat history is not in the correct format."
# Include system prompt
messages.insert(0, {"role": "system", "content": system_prompt})
print("DEBUG: Final messages sent to chatbot:", messages)
response = ""
try:
for message in client.chat_completion(messages, max_tokens=512, stream=True, temperature=0.7, top_p=0.95):
token = message.choices[0].delta.content if message.choices[0].delta else ""
response += token
print("DEBUG: Received token:", token) # Log tokens received
yield response
except Exception as e:
print("DEBUG: Chatbot Error:", str(e))
yield f"Error: {str(e)}"
# Define ChatGPT-style UI
with gr.Blocks(theme="soft") as demo:
gr.Markdown("<h2 align='center'>πŸ“ΉπŸŽ€πŸ’¬ Multi-Modal Chatbot (Video + Text) </h2>")
chatbot = gr.Chatbot(label="ChatGPT-Like Chat")
video_input = gr.Video(label="Upload Video (Optional)")
text_input = gr.Textbox(label="Enter Text (Optional)", placeholder="Type your message here...")
submit_button = gr.Button("Submit") # βœ… Added a submit button
clear_button = gr.Button("Clear Chat")
def clear_chat():
return [], None, ""
# βœ… Fix: Prevent video from disappearing instantly
def process_input(video, text):
return respond(video, text, chatbot)
submit_button.click(process_input, inputs=[video_input, text_input], outputs=[chatbot])
clear_button.click(clear_chat, outputs=[chatbot, video_input, text_input])
# Launch chatbot
if __name__ == "__main__":
demo.launch()