Spaces:
Running
Running
File size: 14,589 Bytes
ab4fd59 3c9e8cf dd436a1 4a21329 dd436a1 3c9e8cf a6253f6 b835d1f 6c00321 55a04ee 8a73e97 55a04ee 8a73e97 6c00321 55a04ee 8a73e97 55a04ee 8a73e97 55a04ee 3a2b7bc b835d1f 6c00321 3c9e8cf 55a04ee 3c9e8cf b835d1f 3c9e8cf 6c00321 3c9e8cf 6c00321 3c9e8cf 55a04ee b835d1f 3b6bab2 b835d1f 3b6bab2 b835d1f 3b6bab2 b835d1f 3c9e8cf b835d1f 3c9e8cf 3b6bab2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import gradio as gr
from huggingface_hub import InferenceClient
import gradio as gr
import numpy as np
import cv2
import librosa
import moviepy.editor as mp
import speech_recognition as sr
import tempfile
import wave
import os
import tensorflow as tf
from tensorflow.keras.preprocessing.text import tokenizer_from_json
from tensorflow.keras.models import load_model, model_from_json
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.preprocessing.sequence import pad_sequences
import nltk
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('punkt_tab')
nltk.download('wordnet')
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import pickle
import json
from tensorflow.keras.preprocessing.image import img_to_array, load_img
from collections import Counter
# Load the text model
with open('model_architecture_for_text_emotion_updated_json.json', 'r') as json_file:
model_json = json_file.read()
text_model = model_from_json(model_json)
text_model.load_weights("model_for_text_emotion_updated(1).keras")
# Load the encoder and scaler for audio
with open('encoder.pkl', 'rb') as file:
encoder = pickle.load(file)
with open('scaler.pkl', 'rb') as file:
scaler = pickle.load(file)
# Load the tokenizer for text
with open('tokenizer.json') as json_file:
tokenizer_json = json.load(json_file)
tokenizer = tokenizer_from_json(tokenizer_json)
# Load the audio model
audio_model = load_model('my_model.h5')
# Load the image model
image_model = load_model('model_emotion.h5')
# Initialize NLTK
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
# Preprocess text function
def preprocess_text(text):
tokens = nltk.word_tokenize(text.lower())
tokens = [word for word in tokens if word.isalnum() and word not in stop_words]
lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens]
return ' '.join(lemmatized_tokens)
# Extract features from audio
# Extract features from audio
def extract_features(data, sample_rate):
result = []
try:
zcr = np.mean(librosa.feature.zero_crossing_rate(y=data).T, axis=0)
result.append(zcr)
stft = np.abs(librosa.stft(data))
chroma_stft = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T, axis=0)
result.append(chroma_stft)
mfcc = np.mean(librosa.feature.mfcc(y=data, sr=sample_rate).T, axis=0)
result.append(mfcc)
rms = np.mean(librosa.feature.rms(y=data).T, axis=0)
result.append(rms)
mel = np.mean(librosa.feature.melspectrogram(y=data, sr=sample_rate).T, axis=0)
result.append(mel)
# Ensure all features are numpy arrays
result = [np.atleast_1d(feature) for feature in result]
# Stack features horizontally
return np.hstack(result)
except Exception as e:
print(f"Error extracting features: {e}")
return np.zeros(1) # Return a default feature array if extraction fails
# Predict emotion from text
def find_emotion_using_text(sample_rate, audio_data, recognizer):
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
temp_audio_path = temp_audio_file.name
with wave.open(temp_audio_path, 'w') as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio_data.tobytes())
with sr.AudioFile(temp_audio_path) as source:
audio_record = recognizer.record(source)
text = recognizer.recognize_google(audio_record)
pre_text = preprocess_text(text)
title_seq = tokenizer.texts_to_sequences([pre_text])
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
inp1 = np.array(padded_title_seq)
text_prediction = text_model.predict(inp1)
os.remove(temp_audio_path)
max_index = text_prediction.argmax()
return mapping[max_index]
# Predict emotion from audio
def predict_emotion(audio_data):
sample_rate, data = audio_data
data = data.flatten()
if data.dtype != np.float32:
data = data.astype(np.float32)
data = data / np.max(np.abs(data))
features = extract_features(data, sample_rate)
features = np.expand_dims(features, axis=0)
if features.ndim == 3:
features = np.squeeze(features, axis=2)
elif features.ndim != 2:
raise ValueError("Features array has unexpected dimensions.")
scaled_features = scaler.transform(features)
scaled_features = np.expand_dims(scaled_features, axis=2)
prediction = audio_model.predict(scaled_features)
emotion_index = np.argmax(prediction)
num_classes = len(encoder.categories_[0])
emotion_array = np.zeros((1, num_classes))
emotion_array[0, emotion_index] = 1
emotion_label = encoder.inverse_transform(emotion_array)[0]
return emotion_label
# Preprocess image
def preprocess_image(image):
image = load_img(image, target_size=(48, 48), color_mode="grayscale")
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = image / 255.0
return image
# Predict emotion from image
def predict_emotion_from_image(image):
preprocessed_image = preprocess_image(image)
prediction = image_model.predict(preprocessed_image)
emotion_index = np.argmax(prediction)
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
return mapping[emotion_index]
# Main function to handle text, audio, and image emotion recognition
# Load the models and other necessary files (as before)
# Preprocess image (as before)
# Predict emotion from image (as before)
# Extract features from audio (as before)
# Predict emotion from text (as before)
# Predict emotion from audio (as before)
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
frame_count = 0
predictions = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Process every nth frame (to speed up processing)
if frame_count % int(frame_rate) == 0:
# Convert frame to grayscale as required by your model
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = cv2.resize(frame, (48, 48)) # Resize to match model input size
frame = img_to_array(frame)
frame = np.expand_dims(frame, axis=0) / 255.0
# Predict emotion
prediction = image_model.predict(frame)
predictions.append(np.argmax(prediction))
frame_count += 1
cap.release()
# cv2.destroyAllWindows()
# Find the most common prediction
most_common_emotion = Counter(predictions).most_common(1)[0][0]
mapping = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}
return mapping[most_common_emotion]
# Process audio from video and predict emotions
def process_audio_from_video(video_path):
video = mp.VideoFileClip(video_path)
audio = video.audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
temp_audio_path = temp_audio_file.name
audio.write_audiofile(temp_audio_path)
recognizer = sr.Recognizer()
with sr.AudioFile(temp_audio_path) as source:
audio_record = recognizer.record(source)
text = recognizer.recognize_google(audio_record)
pre_text = preprocess_text(text)
title_seq = tokenizer.texts_to_sequences([pre_text])
padded_title_seq = pad_sequences(title_seq, maxlen=35, padding='post', truncating='post')
inp1 = np.array(padded_title_seq)
text_prediction = text_model.predict(inp1)
os.remove(temp_audio_path)
max_index = text_prediction.argmax()
text_emotion = {0: "anger", 1: "disgust", 2: "fear", 3: "joy", 4: "neutral", 5: "sadness", 6: "surprise"}[max_index]
audio_emotion = predict_emotion((audio.fps, np.array(audio.to_soundarray())))
return text_emotion, audio_emotion, text
# Main function to handle video emotion recognition
def transcribe_and_predict_video(video):
"""
Process video for emotion detection (image, audio, text) and transcription.
(Replace process_video & process_audio_from_video with actual implementations)
"""
image_emotion = process_video(video) # Emotion from video frames
print("Image processing done.")
text_emotion, audio_emotion, extracted_text = process_audio_from_video(video) # Speech-to-text + emotions
print("Audio processing done.")
return {
"text_emotion": text_emotion,
"audio_emotion": audio_emotion,
"image_emotion": image_emotion,
"extracted_text": extracted_text,
}
# Load Zephyr-7B Model
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
client = InferenceClient(MODEL_NAME)
# # Chatbot response function
# def respond(video, history, system_message, max_tokens, temperature, top_p):
# video_path = video.name # Get the uploaded video file path
# # Process the video for emotions & text
# result = transcribe_and_predict_video(video_path)
# # Construct a system prompt with extracted emotions & text
# system_prompt = (
# f"{system_message}\n\n"
# f"Detected Emotions:\n"
# f"- Text Emotion: {result['text_emotion']}\n"
# f"- Audio Emotion: {result['audio_emotion']}\n"
# f"- Image Emotion: {result['image_emotion']}\n\n"
# f"Extracted Speech: {result['extracted_text']}"
# )
# messages = [{"role": "system", "content": system_prompt}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": result['extracted_text']})
# response = ""
# try:
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content if message.choices[0].delta else ""
# response += token
# yield response
# except Exception as e:
# yield f"Error: {str(e)}"
# # Gradio UI for video chatbot
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Video(label="Upload a Video"), # Video input
# gr.Textbox(value="You are a chatbot that analyzes emotions and responds accordingly.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
# gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
def respond(video, text_input, history):
"""Processes user input (video, text, or both) and generates a chatbot response."""
messages = []
system_prompt = "You are a chatbot that can analyze emotions from videos and respond accordingly."
print("DEBUG: Function called with video:", video)
print("DEBUG: Function called with text_input:", text_input)
print("DEBUG: Function called with history:", history)
# Handle video input safely
if video:
try:
video_path = video if isinstance(video, str) else getattr(video, "name", None)
if not video_path:
return "Error: Invalid video input."
result = transcribe_and_predict_video(video_path)
print("DEBUG: Video Analysis Result:", result)
system_prompt += f"\n\nDetected Emotions:\n"
system_prompt += f"- Text Emotion: {result['text_emotion']}\n"
system_prompt += f"- Audio Emotion: {result['audio_emotion']}\n"
system_prompt += f"- Image Emotion: {result['image_emotion']}\n\n"
system_prompt += f"Extracted Speech: {result['extracted_text']}\n"
messages.append({"role": "user", "content": result["extracted_text"]}) # Add extracted speech
except Exception as e:
return f"Error processing video: {str(e)}"
# Ensure history is a list
if isinstance(history, list):
for val in history:
if isinstance(val, (list, tuple)) and len(val) == 2:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
else:
return "Error: Chat history is not in the correct format."
# Include system prompt
messages.insert(0, {"role": "system", "content": system_prompt})
print("DEBUG: Final messages sent to chatbot:", messages)
response = ""
try:
for message in client.chat_completion(messages, max_tokens=512, stream=True, temperature=0.7, top_p=0.95):
token = message.choices[0].delta.content if message.choices[0].delta else ""
response += token
print("DEBUG: Received token:", token) # Log tokens received
yield response
except Exception as e:
print("DEBUG: Chatbot Error:", str(e))
yield f"Error: {str(e)}"
# Define ChatGPT-style UI
with gr.Blocks(theme="soft") as demo:
gr.Markdown("<h2 align='center'>πΉπ€π¬ Multi-Modal Chatbot (Video + Text) </h2>")
chatbot = gr.Chatbot(label="ChatGPT-Like Chat")
video_input = gr.Video(label="Upload Video (Optional)")
text_input = gr.Textbox(label="Enter Text (Optional)", placeholder="Type your message here...")
submit_button = gr.Button("Submit") # β
Added a submit button
clear_button = gr.Button("Clear Chat")
def clear_chat():
return [], None, ""
# β
Fix: Prevent video from disappearing instantly
def process_input(video, text):
return respond(video, text, chatbot)
submit_button.click(process_input, inputs=[video_input, text_input], outputs=[chatbot])
clear_button.click(clear_chat, outputs=[chatbot, video_input, text_input])
# Launch chatbot
if __name__ == "__main__":
demo.launch() |