File size: 4,678 Bytes
db9f86a
 
 
 
 
8b7bc13
db9f86a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b7bc13
db9f86a
8b7bc13
 
 
 
 
 
 
 
 
 
 
 
db9f86a
 
8b7bc13
db9f86a
8b7bc13
 
 
 
 
 
 
 
 
 
db9f86a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import chainlit as cl
from dotenv import load_dotenv
from operator import itemgetter
from langchain_huggingface import HuggingFaceEndpoint
from PyPDF2 import PdfReader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Qdrant
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_core.prompts import PromptTemplate
from langchain.schema.runnable.config import RunnableConfig

# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
# ---- ENV VARIABLES ---- # 
"""
This function will load our environment file (.env) if it is present.

NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
"""
load_dotenv()

"""
We will load our environment variables here.
"""
HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
HF_TOKEN = os.environ["HF_TOKEN"]
VECTOR_STORE_PATH = "./data/vectorstore"

# ---- GLOBAL DECLARATIONS ---- #

# -- RETRIEVAL -- #
"""
1. Load Documents from PDF File
2. Split Documents into Chunks
3. Load HuggingFace Embeddings (remember to use the URL we set above)
4. Index Files if they do not exist, otherwise load the vectorstore
"""
document_loader = PdfReader("./data/Airbnb_Q1_Filings.pdf")

raw_text = ''
for i, page in enumerate(document_loader.pages):
    content = page.extract_text()
    if content:
        raw_text += content

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = 850,
    chunk_overlap  = 50,
    length_function = len,
)
texts = text_splitter.split_text(raw_text)

# Note: Uses OPENAI_API_KEY env variable to make api calls
hf_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")

for i in range(0, len(texts), 32):
    if i == 0:
        vectorstore = Qdrant.from_texts(
                texts[i:i+32],
                hf_embeddings,
                force_recreate=True,
                path=VECTOR_STORE_PATH,
                collection_name="Airbnb Filings")
        continue
    vectorstore.add_texts(texts[i:i+32])

retriever = vectorstore.as_retriever()
# -- AUGMENTED -- #
"""
1. Define a String Template
2. Create a Prompt Template from the String Template
"""
RAG_PROMPT_TEMPLATE = """\
<|start_header_id|>system<|end_header_id|>
You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>

<|start_header_id|>user<|end_header_id|>
User Query:
{query}

Context:
{context}<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
"""

rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)

# -- GENERATION -- #
"""
1. Create a HuggingFaceEndpoint for the LLM
"""
hf_llm = HuggingFaceEndpoint(
    endpoint_url=HF_LLM_ENDPOINT,
    max_new_tokens=512,
    top_k=10,
    top_p=0.95,
    temperature=0.3,
    repetition_penalty=1.15,
    huggingfacehub_api_token=HF_TOKEN,
)

@cl.author_rename
def rename(original_author: str):
    """
    This function can be used to rename the 'author' of a message. 

    In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
    """
    rename_dict = {
        "Assistant" : "AirBnB Auditor"
    }
    return rename_dict.get(original_author, original_author)

@cl.on_chat_start
async def start_chat():
    """
    This function will be called at the start of every user session. 

    We will build our LCEL RAG chain here, and store it in the user session. 

    The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
    """

    lcel_rag_chain = (
        {"context": itemgetter("query") | retriever, "query": itemgetter("query")}
        | rag_prompt | hf_llm
    )

    cl.user_session.set("lcel_rag_chain", lcel_rag_chain)

@cl.on_message  
async def main(message: cl.Message):
    """
    This function will be called every time a message is recieved from a session.

    We will use the LCEL RAG chain to generate a response to the user query.

    The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
    """
    lcel_rag_chain = cl.user_session.get("lcel_rag_chain")

    msg = cl.Message(content="")

    for chunk in await cl.make_async(lcel_rag_chain.stream)(
        {"query": message.content},
        config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
    ):
        # Note: Skip printing eot_id token at the end of response. A more elegant solution would be to fix the model's generator config. 
        if chunk != "<|eot_id|>":
            await msg.stream_token(chunk)

    await msg.send()