gkbalu commited on
Commit
8b7bc13
·
1 Parent(s): 282df4d

Midterm proj

Browse files
Files changed (2) hide show
  1. app.py +27 -12
  2. backup.py +138 -0
app.py CHANGED
@@ -3,7 +3,7 @@ import chainlit as cl
3
  from dotenv import load_dotenv
4
  from operator import itemgetter
5
  from langchain_huggingface import HuggingFaceEndpoint
6
- from langchain_community.document_loaders import PyMuPDFLoader
7
  from langchain_text_splitters import RecursiveCharacterTextSplitter
8
  from langchain_community.vectorstores import Qdrant
9
  from langchain_openai.embeddings import OpenAIEmbeddings
@@ -35,21 +35,36 @@ VECTOR_STORE_PATH = "./data/vectorstore"
35
  3. Load HuggingFace Embeddings (remember to use the URL we set above)
36
  4. Index Files if they do not exist, otherwise load the vectorstore
37
  """
38
- document_loader = PyMuPDFLoader("./data/Airbnb_Q1_Filings.pdf")
39
- documents = document_loader.load()
40
-
41
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
42
- split_documents = text_splitter.split_documents(documents)
 
 
 
 
 
 
 
 
 
43
 
44
  # Note: Uses OPENAI_API_KEY env variable to make api calls
45
- openai_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
46
-
47
- os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
48
- vectorstore = Qdrant.from_documents(documents=split_documents,embedding=openai_embeddings,path=VECTOR_STORE_PATH,collection_name="airbnb_financials",batch_size=32,
49
- )
 
 
 
 
 
 
 
50
 
51
  retriever = vectorstore.as_retriever()
52
-
53
  # -- AUGMENTED -- #
54
  """
55
  1. Define a String Template
 
3
  from dotenv import load_dotenv
4
  from operator import itemgetter
5
  from langchain_huggingface import HuggingFaceEndpoint
6
+ from PyPDF2 import PdfReader
7
  from langchain_text_splitters import RecursiveCharacterTextSplitter
8
  from langchain_community.vectorstores import Qdrant
9
  from langchain_openai.embeddings import OpenAIEmbeddings
 
35
  3. Load HuggingFace Embeddings (remember to use the URL we set above)
36
  4. Index Files if they do not exist, otherwise load the vectorstore
37
  """
38
+ document_loader = PdfReader("./data/Airbnb_Q1_Filings.pdf")
39
+
40
+ raw_text = ''
41
+ for i, page in enumerate(document_loader.pages):
42
+ content = page.extract_text()
43
+ if content:
44
+ raw_text += content
45
+
46
+ text_splitter = RecursiveCharacterTextSplitter(
47
+ chunk_size = 850,
48
+ chunk_overlap = 50,
49
+ length_function = len,
50
+ )
51
+ texts = text_splitter.split_text(raw_text)
52
 
53
  # Note: Uses OPENAI_API_KEY env variable to make api calls
54
+ hf_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
55
+
56
+ for i in range(0, len(texts), 32):
57
+ if i == 0:
58
+ vectorstore = Qdrant.from_texts(
59
+ texts[i:i+32],
60
+ hf_embeddings,
61
+ force_recreate=True,
62
+ path=VECTOR_STORE_PATH,
63
+ collection_name="Airbnb Filings")
64
+ continue
65
+ vectorstore.add_texts(texts[i:i+32])
66
 
67
  retriever = vectorstore.as_retriever()
 
68
  # -- AUGMENTED -- #
69
  """
70
  1. Define a String Template
backup.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chainlit as cl
3
+ from dotenv import load_dotenv
4
+ from operator import itemgetter
5
+ from langchain_huggingface import HuggingFaceEndpoint
6
+ from langchain_community.document_loaders import PyMuPDFLoader
7
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import Qdrant
9
+ from langchain_openai.embeddings import OpenAIEmbeddings
10
+ from langchain_core.prompts import PromptTemplate
11
+ from langchain.schema.runnable.config import RunnableConfig
12
+
13
+ # GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
14
+ # ---- ENV VARIABLES ---- #
15
+ """
16
+ This function will load our environment file (.env) if it is present.
17
+
18
+ NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
19
+ """
20
+ load_dotenv()
21
+
22
+ """
23
+ We will load our environment variables here.
24
+ """
25
+ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
26
+ HF_TOKEN = os.environ["HF_TOKEN"]
27
+ VECTOR_STORE_PATH = "./data/vectorstore"
28
+
29
+ # ---- GLOBAL DECLARATIONS ---- #
30
+
31
+ # -- RETRIEVAL -- #
32
+ """
33
+ 1. Load Documents from PDF File
34
+ 2. Split Documents into Chunks
35
+ 3. Load HuggingFace Embeddings (remember to use the URL we set above)
36
+ 4. Index Files if they do not exist, otherwise load the vectorstore
37
+ """
38
+ document_loader = PyMuPDFLoader("./data/Airbnb_Q1_Filings.pdf")
39
+ documents = document_loader.load()
40
+
41
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
42
+ split_documents = text_splitter.split_documents(documents)
43
+
44
+ # Note: Uses OPENAI_API_KEY env variable to make api calls
45
+ openai_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
46
+
47
+ os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
48
+ vectorstore = Qdrant.from_documents(documents=split_documents,embedding=openai_embeddings,path=VECTOR_STORE_PATH,collection_name="airbnb_financials",batch_size=32,
49
+ )
50
+
51
+ retriever = vectorstore.as_retriever()
52
+
53
+ # -- AUGMENTED -- #
54
+ """
55
+ 1. Define a String Template
56
+ 2. Create a Prompt Template from the String Template
57
+ """
58
+ RAG_PROMPT_TEMPLATE = """\
59
+ <|start_header_id|>system<|end_header_id|>
60
+ You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
61
+
62
+ <|start_header_id|>user<|end_header_id|>
63
+ User Query:
64
+ {query}
65
+
66
+ Context:
67
+ {context}<|eot_id|>
68
+
69
+ <|start_header_id|>assistant<|end_header_id|>
70
+ """
71
+
72
+ rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
73
+
74
+ # -- GENERATION -- #
75
+ """
76
+ 1. Create a HuggingFaceEndpoint for the LLM
77
+ """
78
+ hf_llm = HuggingFaceEndpoint(
79
+ endpoint_url=HF_LLM_ENDPOINT,
80
+ max_new_tokens=512,
81
+ top_k=10,
82
+ top_p=0.95,
83
+ temperature=0.3,
84
+ repetition_penalty=1.15,
85
+ huggingfacehub_api_token=HF_TOKEN,
86
+ )
87
+
88
+ @cl.author_rename
89
+ def rename(original_author: str):
90
+ """
91
+ This function can be used to rename the 'author' of a message.
92
+
93
+ In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
94
+ """
95
+ rename_dict = {
96
+ "Assistant" : "AirBnB Auditor"
97
+ }
98
+ return rename_dict.get(original_author, original_author)
99
+
100
+ @cl.on_chat_start
101
+ async def start_chat():
102
+ """
103
+ This function will be called at the start of every user session.
104
+
105
+ We will build our LCEL RAG chain here, and store it in the user session.
106
+
107
+ The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
108
+ """
109
+
110
+ lcel_rag_chain = (
111
+ {"context": itemgetter("query") | retriever, "query": itemgetter("query")}
112
+ | rag_prompt | hf_llm
113
+ )
114
+
115
+ cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
116
+
117
+ @cl.on_message
118
+ async def main(message: cl.Message):
119
+ """
120
+ This function will be called every time a message is recieved from a session.
121
+
122
+ We will use the LCEL RAG chain to generate a response to the user query.
123
+
124
+ The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
125
+ """
126
+ lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
127
+
128
+ msg = cl.Message(content="")
129
+
130
+ for chunk in await cl.make_async(lcel_rag_chain.stream)(
131
+ {"query": message.content},
132
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
133
+ ):
134
+ # Note: Skip printing eot_id token at the end of response. A more elegant solution would be to fix the model's generator config.
135
+ if chunk != "<|eot_id|>":
136
+ await msg.stream_token(chunk)
137
+
138
+ await msg.send()