FaceGEN / app.py
Venkateshwar Reddy
fixed order of parameters
ef9a4d3
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline, DDPMPipeline, DDPMScheduler
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DDPMPipeline.from_pretrained("FrozenScar/cartoon_face", torch_dtype=torch.float16, variant="fp16", use_safetensors=True,scheduler=noise_scheduler)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DDPMPipeline.from_pretrained("FrozenScar/cartoon_face", scheduler=noise_scheduler, use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(num_inference_steps,prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale):
#if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(generator=generator,num_inference_steps=num_inference_steps).images[0]
return image
examples = [
"OK broo",
"Nothing brooo"
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# FACE GENERATOR
Currently running on {power_device}.
""")
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=20,
step=1,
value=6,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
# with gr.Accordion("Advanced Settings", open=False):
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# visible=False,
# )
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=512,
# )
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=512,
# )
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=0.0,
# )
# num_inference_steps = gr.Slider(
# label="Number of inference steps",
# minimum=1,
# maximum=120,
# step=1,
# value=2,
# )
# gr.Examples(
# examples = examples,
# inputs = [prompt]
# )
run_button.click(
fn = infer,
inputs = [ num_inference_steps],
outputs = [result]
)
demo.queue().launch()