Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline, DDPMPipeline, DDPMScheduler | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
noise_scheduler = DDPMScheduler(num_train_timesteps=1000) | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DDPMPipeline.from_pretrained("FrozenScar/cartoon_face", torch_dtype=torch.float16, variant="fp16", use_safetensors=True,scheduler=noise_scheduler) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
else: | |
pipe = DDPMPipeline.from_pretrained("FrozenScar/cartoon_face", scheduler=noise_scheduler, use_safetensors=True) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(num_inference_steps,prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale): | |
#if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe(generator=generator,num_inference_steps=num_inference_steps).images[0] | |
return image | |
examples = [ | |
"OK broo", | |
"Nothing brooo" | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# FACE GENERATOR | |
Currently running on {power_device}. | |
""") | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=6, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
# with gr.Accordion("Advanced Settings", open=False): | |
# negative_prompt = gr.Text( | |
# label="Negative prompt", | |
# max_lines=1, | |
# placeholder="Enter a negative prompt", | |
# visible=False, | |
# ) | |
# seed = gr.Slider( | |
# label="Seed", | |
# minimum=0, | |
# maximum=MAX_SEED, | |
# step=1, | |
# value=0, | |
# ) | |
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# with gr.Row(): | |
# width = gr.Slider( | |
# label="Width", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=512, | |
# ) | |
# height = gr.Slider( | |
# label="Height", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=512, | |
# ) | |
# with gr.Row(): | |
# guidance_scale = gr.Slider( | |
# label="Guidance scale", | |
# minimum=0.0, | |
# maximum=10.0, | |
# step=0.1, | |
# value=0.0, | |
# ) | |
# num_inference_steps = gr.Slider( | |
# label="Number of inference steps", | |
# minimum=1, | |
# maximum=120, | |
# step=1, | |
# value=2, | |
# ) | |
# gr.Examples( | |
# examples = examples, | |
# inputs = [prompt] | |
# ) | |
run_button.click( | |
fn = infer, | |
inputs = [ num_inference_steps], | |
outputs = [result] | |
) | |
demo.queue().launch() |