File size: 3,913 Bytes
daa0c08
 
 
4ea785f
daa0c08
 
 
4ea785f
daa0c08
 
6603ea2
daa0c08
 
 
4ea785f
daa0c08
 
 
 
 
ef9a4d3
daa0c08
a65154f
 
daa0c08
 
a65154f
daa0c08
 
 
 
6603ea2
 
daa0c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34b9d8
daa0c08
 
 
ef9a4d3
20901f0
 
 
 
 
 
 
daa0c08
 
 
 
 
20901f0
daa0c08
20901f0
 
 
 
 
 
daa0c08
20901f0
 
 
 
 
 
 
daa0c08
20901f0
daa0c08
20901f0
daa0c08
20901f0
 
 
 
 
 
 
daa0c08
20901f0
 
 
 
 
 
 
daa0c08
20901f0
daa0c08
20901f0
 
 
 
 
 
 
daa0c08
20901f0
 
 
 
 
 
 
daa0c08
20901f0
 
 
 
daa0c08
 
 
20901f0
daa0c08
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline, DDPMPipeline, DDPMScheduler
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DDPMPipeline.from_pretrained("FrozenScar/cartoon_face", torch_dtype=torch.float16, variant="fp16", use_safetensors=True,scheduler=noise_scheduler)
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else: 
    pipe = DDPMPipeline.from_pretrained("FrozenScar/cartoon_face", scheduler=noise_scheduler, use_safetensors=True)
    pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(num_inference_steps,prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale):

    #if randomize_seed:
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(generator=generator,num_inference_steps=num_inference_steps).images[0] 
    
    return image

examples = [
    "OK broo",
   "Nothing brooo"
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # FACE GENERATOR
        Currently running on {power_device}.
        """)
        
        with gr.Row(): 
            num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=20,
                    step=1,
                    value=6,
                )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        # with gr.Accordion("Advanced Settings", open=False):
            
        #     negative_prompt = gr.Text(
        #         label="Negative prompt",
        #         max_lines=1,
        #         placeholder="Enter a negative prompt",
        #         visible=False,
        #     )
            
        #     seed = gr.Slider(
        #         label="Seed",
        #         minimum=0,
        #         maximum=MAX_SEED,
        #         step=1,
        #         value=0,
        #     )
            
        #     randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
        #     with gr.Row():
                
        #         width = gr.Slider(
        #             label="Width",
        #             minimum=256,
        #             maximum=MAX_IMAGE_SIZE,
        #             step=32,
        #             value=512,
        #         )
                
        #         height = gr.Slider(
        #             label="Height",
        #             minimum=256,
        #             maximum=MAX_IMAGE_SIZE,
        #             step=32,
        #             value=512,
        #         )
            
        #     with gr.Row():
                
        #         guidance_scale = gr.Slider(
        #             label="Guidance scale",
        #             minimum=0.0,
        #             maximum=10.0,
        #             step=0.1,
        #             value=0.0,
        #         )
                
        #         num_inference_steps = gr.Slider(
        #             label="Number of inference steps",
        #             minimum=1,
        #             maximum=120,
        #             step=1,
        #             value=2,
        #         )
        
        # gr.Examples(
        #     examples = examples,
        #     inputs = [prompt]
        # )

    run_button.click(
        fn = infer,
        inputs = [ num_inference_steps],
        outputs = [result]
    )

demo.queue().launch()