Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,10 @@ import torch
|
|
5 |
import numpy as np
|
6 |
from gradio_client import Client
|
7 |
|
8 |
-
# Cache the model and tokenizer
|
9 |
-
|
|
|
|
|
10 |
def load_model_and_tokenizer():
|
11 |
model_name = "Frenchizer/all-MiniLM-L6-v2" # Replace with your Space and model path
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -32,7 +34,7 @@ labels = [
|
|
32 |
"sustained", "technical", "theater", "tourism", "travel"
|
33 |
]
|
34 |
|
35 |
-
@
|
36 |
def precompute_label_embeddings():
|
37 |
def encode_text(texts):
|
38 |
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
|
|
5 |
import numpy as np
|
6 |
from gradio_client import Client
|
7 |
|
8 |
+
# Cache the model and tokenizer using lru_cache
|
9 |
+
from functools import lru_cache
|
10 |
+
|
11 |
+
@lru_cache(maxsize=1)
|
12 |
def load_model_and_tokenizer():
|
13 |
model_name = "Frenchizer/all-MiniLM-L6-v2" # Replace with your Space and model path
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
34 |
"sustained", "technical", "theater", "tourism", "travel"
|
35 |
]
|
36 |
|
37 |
+
@lru_cache(maxsize=1)
|
38 |
def precompute_label_embeddings():
|
39 |
def encode_text(texts):
|
40 |
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|