Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,22 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
# Load the model and
|
| 6 |
-
|
|
|
|
|
|
|
| 7 |
labels = [
|
| 8 |
"aerospace", "anatomy", "anthropology", "art",
|
| 9 |
"automotive", "blockchain", "biology", "chemistry",
|
|
@@ -18,10 +31,27 @@ labels = [
|
|
| 18 |
"robotics", "slang", "social media", "speech", "sports",
|
| 19 |
"sustained", "technical", "theater", "tourism", "travel"
|
| 20 |
]
|
| 21 |
-
label_embeddings = context_model.encode(labels)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def detect_context(input_text, high_confidence_threshold=0.9, fallback_threshold=0.8, max_results=3):
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
similarities = cosine_similarity(input_embedding, label_embeddings)[0]
|
| 26 |
|
| 27 |
for label, score in zip(labels, similarities):
|
|
@@ -33,7 +63,6 @@ def detect_context(input_text, high_confidence_threshold=0.9, fallback_threshold
|
|
| 33 |
return [label for label, score in sorted_labels] if sorted_labels else ["general"]
|
| 34 |
|
| 35 |
# Translation client
|
| 36 |
-
from gradio_client import Client
|
| 37 |
translation_client = Client("Frenchizer/space_3")
|
| 38 |
|
| 39 |
def translate_text(input_text):
|
|
@@ -54,4 +83,4 @@ interface = gr.Interface(
|
|
| 54 |
description="Translate text from English to French with context detection."
|
| 55 |
)
|
| 56 |
|
| 57 |
-
interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModel
|
| 3 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
from gradio_client import Client
|
| 7 |
+
|
| 8 |
+
# Cache the model and tokenizer
|
| 9 |
+
@gr.cache()
|
| 10 |
+
def load_model_and_tokenizer():
|
| 11 |
+
model_name = "Frenchizer/all-MiniLM-L6-v2" # Replace with your Space and model path
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 13 |
+
model = AutoModel.from_pretrained(model_name)
|
| 14 |
+
return tokenizer, model
|
| 15 |
|
| 16 |
+
# Load the model and tokenizer
|
| 17 |
+
tokenizer, model = load_model_and_tokenizer()
|
| 18 |
+
|
| 19 |
+
# Precompute label embeddings
|
| 20 |
labels = [
|
| 21 |
"aerospace", "anatomy", "anthropology", "art",
|
| 22 |
"automotive", "blockchain", "biology", "chemistry",
|
|
|
|
| 31 |
"robotics", "slang", "social media", "speech", "sports",
|
| 32 |
"sustained", "technical", "theater", "tourism", "travel"
|
| 33 |
]
|
|
|
|
| 34 |
|
| 35 |
+
@gr.cache()
|
| 36 |
+
def precompute_label_embeddings():
|
| 37 |
+
def encode_text(texts):
|
| 38 |
+
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
outputs = model(**inputs)
|
| 41 |
+
return outputs.last_hidden_state.mean(dim=1).numpy() # Use mean pooling for embeddings
|
| 42 |
+
return encode_text(labels)
|
| 43 |
+
|
| 44 |
+
label_embeddings = precompute_label_embeddings()
|
| 45 |
+
|
| 46 |
+
# Function to detect context
|
| 47 |
def detect_context(input_text, high_confidence_threshold=0.9, fallback_threshold=0.8, max_results=3):
|
| 48 |
+
def encode_text(texts):
|
| 49 |
+
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
outputs = model(**inputs)
|
| 52 |
+
return outputs.last_hidden_state.mean(dim=1).numpy() # Use mean pooling for embeddings
|
| 53 |
+
|
| 54 |
+
input_embedding = encode_text([input_text])
|
| 55 |
similarities = cosine_similarity(input_embedding, label_embeddings)[0]
|
| 56 |
|
| 57 |
for label, score in zip(labels, similarities):
|
|
|
|
| 63 |
return [label for label, score in sorted_labels] if sorted_labels else ["general"]
|
| 64 |
|
| 65 |
# Translation client
|
|
|
|
| 66 |
translation_client = Client("Frenchizer/space_3")
|
| 67 |
|
| 68 |
def translate_text(input_text):
|
|
|
|
| 83 |
description="Translate text from English to French with context detection."
|
| 84 |
)
|
| 85 |
|
| 86 |
+
interface.launch()
|