Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,57 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
from
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
"
|
12 |
-
"
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
18 |
-
"
|
19 |
-
"
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
# Translate text
|
60 |
-
translation = translate_text(input_text)
|
61 |
-
return translation
|
62 |
-
|
63 |
-
# Create a Gradio interface
|
64 |
-
interface = gr.Interface(
|
65 |
-
fn=process_request,
|
66 |
-
inputs="text",
|
67 |
-
outputs="text",
|
68 |
-
title="Frenchizer",
|
69 |
-
description="Translate text from English to French with context detection."
|
70 |
-
)
|
71 |
-
|
72 |
-
# Launch the Gradio app
|
73 |
-
interface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
|
5 |
+
# Load the model and precompute label embeddings
|
6 |
+
context_model = SentenceTransformer("all-MiniLM-L6-v2")
|
7 |
+
labels = [
|
8 |
+
"aerospace", "anatomy", "anthropology", "art",
|
9 |
+
"automotive", "blockchain", "biology", "chemistry",
|
10 |
+
"cryptocurrency", "data science", "design", "e-commerce",
|
11 |
+
"education", "engineering", "entertainment", "environment",
|
12 |
+
"fashion", "finance", "food commerce", "general",
|
13 |
+
"gaming", "healthcare", "history", "html",
|
14 |
+
"information technology", "IT", "keywords", "legal",
|
15 |
+
"literature", "machine learning", "marketing", "medicine",
|
16 |
+
"music", "personal development", "philosophy", "physics",
|
17 |
+
"politics", "poetry", "programming", "real estate", "retail",
|
18 |
+
"robotics", "slang", "social media", "speech", "sports",
|
19 |
+
"sustained", "technical", "theater", "tourism", "travel"
|
20 |
+
]
|
21 |
+
label_embeddings = context_model.encode(labels)
|
22 |
+
|
23 |
+
def detect_context(input_text, high_confidence_threshold=0.9, fallback_threshold=0.8, max_results=3):
|
24 |
+
input_embedding = context_model.encode([input_text])
|
25 |
+
similarities = cosine_similarity(input_embedding, label_embeddings)[0]
|
26 |
+
|
27 |
+
for label, score in zip(labels, similarities):
|
28 |
+
if score >= high_confidence_threshold:
|
29 |
+
return [label]
|
30 |
+
|
31 |
+
label_scores = [(label, score) for label, score in zip(labels, similarities) if score >= fallback_threshold]
|
32 |
+
sorted_labels = sorted(label_scores, key=lambda x: x[1], reverse=True)[:max_results]
|
33 |
+
return [label for label, score in sorted_labels] if sorted_labels else ["general"]
|
34 |
+
|
35 |
+
# Translation client
|
36 |
+
from gradio_client import Client
|
37 |
+
translation_client = Client("Frenchizer/space_3")
|
38 |
+
|
39 |
+
def translate_text(input_text):
|
40 |
+
return translation_client.predict(input_text)
|
41 |
+
|
42 |
+
def process_request(input_text):
|
43 |
+
context = detect_context(input_text)
|
44 |
+
print(f"Detected context: {context}")
|
45 |
+
translation = translate_text(input_text)
|
46 |
+
return translation
|
47 |
+
|
48 |
+
# Gradio interface
|
49 |
+
interface = gr.Interface(
|
50 |
+
fn=process_request,
|
51 |
+
inputs="text",
|
52 |
+
outputs="text",
|
53 |
+
title="Frenchizer",
|
54 |
+
description="Translate text from English to French with context detection."
|
55 |
+
)
|
56 |
+
|
57 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|