Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
from gradio_client import Client | |
from functools import lru_cache | |
# Cache the model and tokenizer using lru_cache | |
def load_model_and_tokenizer(): | |
model_name = "./all-MiniLM-L6-v2" # Replace with your Space and model path | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModel.from_pretrained(model_name) | |
return tokenizer, model | |
# Load the model and tokenizer | |
tokenizer, model = load_model_and_tokenizer() | |
# Function to detect context (simplified) | |
def detect_context(input_text): | |
# Tokenize the input text | |
inputs = tokenizer([input_text], padding=True, truncation=True, return_tensors="pt") | |
# Run the model | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Get the embedding (mean pooling) | |
input_embedding = outputs.last_hidden_state.mean(dim=1).numpy() | |
# For now, return a placeholder context | |
# You can replace this with a more sophisticated logic if needed | |
return ["general"] | |
# Translation client | |
translation_client = Client("Frenchizer/space_3") | |
def translate_text(input_text): | |
return translation_client.predict(input_text) | |
def process_request(input_text): | |
context = detect_context(input_text) | |
print(f"Detected context: {context}") | |
translation = translate_text(input_text) | |
return translation | |
# Gradio interface | |
interface = gr.Interface( | |
fn=process_request, | |
inputs="text", | |
outputs="text", | |
title="Frenchizer", | |
description="Translate text from English to French with context detection." | |
) | |
interface.launch() |