Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModel
|
3 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
import torch
|
5 |
-
import numpy as np
|
6 |
from gradio_client import Client
|
7 |
from functools import lru_cache
|
8 |
|
@@ -17,49 +15,21 @@ def load_model_and_tokenizer():
|
|
17 |
# Load the model and tokenizer
|
18 |
tokenizer, model = load_model_and_tokenizer()
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
"automotive", "blockchain", "biology", "chemistry",
|
24 |
-
"cryptocurrency", "data science", "design", "e-commerce",
|
25 |
-
"education", "engineering", "entertainment", "environment",
|
26 |
-
"fashion", "finance", "food commerce", "general",
|
27 |
-
"gaming", "healthcare", "history", "html",
|
28 |
-
"information technology", "IT", "keywords", "legal",
|
29 |
-
"literature", "machine learning", "marketing", "medicine",
|
30 |
-
"music", "personal development", "philosophy", "physics",
|
31 |
-
"politics", "poetry", "programming", "real estate", "retail",
|
32 |
-
"robotics", "slang", "social media", "speech", "sports",
|
33 |
-
"sustained", "technical", "theater", "tourism", "travel"
|
34 |
-
]
|
35 |
-
|
36 |
-
@lru_cache(maxsize=1)
|
37 |
-
def precompute_label_embeddings():
|
38 |
-
inputs = tokenizer(labels, padding=True, truncation=True, return_tensors="pt")
|
39 |
-
with torch.no_grad():
|
40 |
-
outputs = model(**inputs)
|
41 |
-
return outputs.last_hidden_state.mean(dim=1).numpy() # Mean pooling for embeddings
|
42 |
-
|
43 |
-
label_embeddings = precompute_label_embeddings()
|
44 |
-
|
45 |
-
# Function to detect context (optimized)
|
46 |
-
def detect_context(input_text, high_confidence_threshold=0.9, fallback_threshold=0.8, max_results=3):
|
47 |
-
# Encode the input text
|
48 |
inputs = tokenizer([input_text], padding=True, truncation=True, return_tensors="pt")
|
|
|
|
|
49 |
with torch.no_grad():
|
50 |
outputs = model(**inputs)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
#
|
57 |
-
|
58 |
-
top_labels = [labels[i] for i in top_indices if similarities[i] >= fallback_threshold]
|
59 |
-
|
60 |
-
# Return high-confidence labels if any, otherwise fallback labels
|
61 |
-
high_conf_labels = [label for label in top_labels if similarities[labels.index(label)] >= high_confidence_threshold]
|
62 |
-
return high_conf_labels if high_conf_labels else top_labels[:max_results]
|
63 |
|
64 |
# Translation client
|
65 |
translation_client = Client("Frenchizer/space_3")
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModel
|
|
|
3 |
import torch
|
|
|
4 |
from gradio_client import Client
|
5 |
from functools import lru_cache
|
6 |
|
|
|
15 |
# Load the model and tokenizer
|
16 |
tokenizer, model = load_model_and_tokenizer()
|
17 |
|
18 |
+
# Function to detect context (simplified)
|
19 |
+
def detect_context(input_text):
|
20 |
+
# Tokenize the input text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
inputs = tokenizer([input_text], padding=True, truncation=True, return_tensors="pt")
|
22 |
+
|
23 |
+
# Run the model
|
24 |
with torch.no_grad():
|
25 |
outputs = model(**inputs)
|
26 |
+
|
27 |
+
# Get the embedding (mean pooling)
|
28 |
+
input_embedding = outputs.last_hidden_state.mean(dim=1).numpy()
|
29 |
+
|
30 |
+
# For now, return a placeholder context
|
31 |
+
# You can replace this with a more sophisticated logic if needed
|
32 |
+
return ["general"]
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Translation client
|
35 |
translation_client = Client("Frenchizer/space_3")
|