EmTpro01's picture
Update app.py
93dec59 verified
raw
history blame
766 Bytes
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# Load model and tokenizer only once
model_name = "EmTpro01/codellama-Code-Generator"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
# Create pipeline once
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
def generate_response(prompt):
# Use the pre-loaded pipeline
response = pipe(prompt, max_length=1024, temperature=0.7, top_p=0.95, repetition_penalty=1.15)
return response[0]['generated_text']
iface = gr.Interface(
fn=generate_response,
inputs="text",
outputs="text",
title="Code Generation Model"
)
iface.launch()