EmTpro01 commited on
Commit
93dec59
·
verified ·
1 Parent(s): f593e17

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -18
app.py CHANGED
@@ -1,25 +1,24 @@
1
  import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
- # Load your fine-tuned model and tokenizer
5
- model_name = "EmTpro01/codellama-Code-Generator" # Use your model name here
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
7
- model = AutoModelForCausalLM.from_pretrained(model_name)
8
 
9
- # Function to generate code from a prompt
10
- def generate_code(prompt):
11
- inputs = tokenizer(prompt, return_tensors="pt")
12
- outputs = model.generate(inputs.input_ids, max_length=150, temperature=0.7, top_k=50)
13
- return tokenizer.decode(outputs[0], skip_special_tokens=True)
14
 
15
- # Create the Gradio interface
16
- interface = gr.Interface(
17
- fn=generate_code,
18
- inputs="text",
19
- outputs="text",
20
- title="Code Generator",
21
- description="Enter a code prompt to generate Python code using the fine-tuned model."
 
 
 
22
  )
23
 
24
- # Launch the app
25
- interface.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
 
4
+ # Load model and tokenizer only once
5
+ model_name = "EmTpro01/codellama-Code-Generator"
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
8
 
9
+ # Create pipeline once
10
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
 
 
 
11
 
12
+ def generate_response(prompt):
13
+ # Use the pre-loaded pipeline
14
+ response = pipe(prompt, max_length=1024, temperature=0.7, top_p=0.95, repetition_penalty=1.15)
15
+ return response[0]['generated_text']
16
+
17
+ iface = gr.Interface(
18
+ fn=generate_response,
19
+ inputs="text",
20
+ outputs="text",
21
+ title="Code Generation Model"
22
  )
23
 
24
+ iface.launch()