Spaces:
Running
Running
Commit
Β·
6de61f5
1
Parent(s):
e635897
Summary
Browse files- README.md +1 -1
- app/data_init.py +16 -0
- app/event_handlers/calculate_practical_tasks.py +214 -102
- app/event_handlers/calculate_pt_scores_blocks.py +0 -4
- app/event_handlers/dropdown_candidates.py +2 -5
- app/event_handlers/practical_subtasks.py +2 -9
- app/tabs.py +2 -9
- config.toml +2 -2
- requirements.txt +1 -1
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: ππ€πππ€
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.7.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
app/data_init.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
File: data_init.py
|
| 3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
| 4 |
+
Description: Data initialization.
|
| 5 |
+
License: MIT License
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from app.config import config_data
|
| 9 |
+
from app.utils import read_csv_file, extract_profession_weights
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
df_traits_priority_for_professions = read_csv_file(config_data.Links_PROFESSIONS)
|
| 13 |
+
weights_professions, interactive_professions = extract_profession_weights(
|
| 14 |
+
df_traits_priority_for_professions,
|
| 15 |
+
config_data.Settings_DROPDOWN_CANDIDATES[0],
|
| 16 |
+
)
|
app/event_handlers/calculate_practical_tasks.py
CHANGED
|
@@ -16,11 +16,13 @@ from bs4 import BeautifulSoup
|
|
| 16 |
from app.config import config_data
|
| 17 |
from app.video_metadata import video_metadata
|
| 18 |
from app.mbti_description import MBTI_DESCRIPTION, MBTI_DATA
|
|
|
|
| 19 |
from app.utils import (
|
| 20 |
read_csv_file,
|
| 21 |
apply_rounding_and_rename_columns,
|
| 22 |
preprocess_scores_df,
|
| 23 |
get_language_settings,
|
|
|
|
| 24 |
)
|
| 25 |
from app.components import (
|
| 26 |
html_message,
|
|
@@ -267,6 +269,7 @@ def event_handler_calculate_practical_task_blocks(
|
|
| 267 |
|
| 268 |
df_hidden = df.drop(
|
| 269 |
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
|
|
|
|
| 270 |
+ config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM
|
| 271 |
)
|
| 272 |
|
|
@@ -350,117 +353,226 @@ def event_handler_calculate_practical_task_blocks(
|
|
| 350 |
|
| 351 |
return existing_tuple[:-1] + person_metadata + existing_tuple[-1:]
|
| 352 |
elif practical_subtasks.lower() == "professional groups":
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
if sum_weights != 100:
|
| 364 |
-
gr.Warning(config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights))
|
| 365 |
-
|
| 366 |
-
return (
|
| 367 |
-
gr.Row(visible=False),
|
| 368 |
-
gr.Column(visible=False),
|
| 369 |
-
dataframe(visible=False),
|
| 370 |
-
files_create_ui(
|
| 371 |
-
None,
|
| 372 |
-
"single",
|
| 373 |
-
[".csv"],
|
| 374 |
-
config_data.OtherMessages_EXPORT_PS,
|
| 375 |
-
True,
|
| 376 |
-
False,
|
| 377 |
-
False,
|
| 378 |
-
"csv-container",
|
| 379 |
-
),
|
| 380 |
-
gr.Accordion(visible=False),
|
| 381 |
-
gr.HTML(visible=False),
|
| 382 |
-
dataframe(visible=False),
|
| 383 |
-
gr.Column(visible=False),
|
| 384 |
-
video_create_ui(visible=False),
|
| 385 |
-
gr.Column(visible=False),
|
| 386 |
-
gr.Row(visible=False),
|
| 387 |
-
gr.Row(visible=False),
|
| 388 |
-
gr.Image(visible=False),
|
| 389 |
-
textbox_create_ui(visible=False),
|
| 390 |
-
gr.Row(visible=False),
|
| 391 |
-
gr.Image(visible=False),
|
| 392 |
-
textbox_create_ui(visible=False),
|
| 393 |
-
gr.Row(visible=False),
|
| 394 |
-
gr.Row(visible=False),
|
| 395 |
-
gr.Image(visible=False),
|
| 396 |
-
textbox_create_ui(visible=False),
|
| 397 |
-
gr.Row(visible=False),
|
| 398 |
-
gr.Image(visible=False),
|
| 399 |
-
textbox_create_ui(visible=False),
|
| 400 |
-
html_message(
|
| 401 |
-
config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights),
|
| 402 |
-
False,
|
| 403 |
-
True,
|
| 404 |
-
),
|
| 405 |
-
)
|
| 406 |
-
else:
|
| 407 |
-
b5._candidate_ranking(
|
| 408 |
-
df_files=pt_scores.iloc[:, 1:],
|
| 409 |
-
weigths_openness=number_openness,
|
| 410 |
-
weigths_conscientiousness=number_conscientiousness,
|
| 411 |
-
weigths_extraversion=number_extraversion,
|
| 412 |
-
weigths_agreeableness=number_agreeableness,
|
| 413 |
-
weigths_non_neuroticism=number_non_neuroticism,
|
| 414 |
-
out=False,
|
| 415 |
)
|
| 416 |
|
| 417 |
-
|
|
|
|
|
|
|
|
|
|
| 418 |
|
| 419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
|
| 421 |
-
|
| 422 |
|
| 423 |
-
|
|
|
|
|
|
|
| 424 |
|
| 425 |
-
|
| 426 |
-
int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1
|
| 427 |
-
)
|
| 428 |
|
| 429 |
-
|
| 430 |
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
|
| 463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
elif practical_subtasks.lower() == "professional skills":
|
| 465 |
df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS)
|
| 466 |
|
|
|
|
| 16 |
from app.config import config_data
|
| 17 |
from app.video_metadata import video_metadata
|
| 18 |
from app.mbti_description import MBTI_DESCRIPTION, MBTI_DATA
|
| 19 |
+
from app.data_init import df_traits_priority_for_professions
|
| 20 |
from app.utils import (
|
| 21 |
read_csv_file,
|
| 22 |
apply_rounding_and_rename_columns,
|
| 23 |
preprocess_scores_df,
|
| 24 |
get_language_settings,
|
| 25 |
+
extract_profession_weights,
|
| 26 |
)
|
| 27 |
from app.components import (
|
| 28 |
html_message,
|
|
|
|
| 269 |
|
| 270 |
df_hidden = df.drop(
|
| 271 |
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
|
| 272 |
+
+ config_data.Settings_DROPDOWN_MBTI_DEL_COLS
|
| 273 |
+ config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM
|
| 274 |
)
|
| 275 |
|
|
|
|
| 353 |
|
| 354 |
return existing_tuple[:-1] + person_metadata + existing_tuple[-1:]
|
| 355 |
elif practical_subtasks.lower() == "professional groups":
|
| 356 |
+
if type_modes == config_data.Settings_TYPE_MODES[0]:
|
| 357 |
+
sum_weights = sum(
|
| 358 |
+
[
|
| 359 |
+
number_openness,
|
| 360 |
+
number_conscientiousness,
|
| 361 |
+
number_extraversion,
|
| 362 |
+
number_agreeableness,
|
| 363 |
+
number_non_neuroticism,
|
| 364 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
)
|
| 366 |
|
| 367 |
+
if sum_weights != 100:
|
| 368 |
+
gr.Warning(
|
| 369 |
+
config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights)
|
| 370 |
+
)
|
| 371 |
|
| 372 |
+
return (
|
| 373 |
+
gr.Row(visible=False),
|
| 374 |
+
gr.Column(visible=False),
|
| 375 |
+
dataframe(visible=False),
|
| 376 |
+
files_create_ui(
|
| 377 |
+
None,
|
| 378 |
+
"single",
|
| 379 |
+
[".csv"],
|
| 380 |
+
config_data.OtherMessages_EXPORT_PS,
|
| 381 |
+
True,
|
| 382 |
+
False,
|
| 383 |
+
False,
|
| 384 |
+
"csv-container",
|
| 385 |
+
),
|
| 386 |
+
gr.Accordion(visible=False),
|
| 387 |
+
gr.HTML(visible=False),
|
| 388 |
+
dataframe(visible=False),
|
| 389 |
+
gr.Column(visible=False),
|
| 390 |
+
video_create_ui(visible=False),
|
| 391 |
+
gr.Column(visible=False),
|
| 392 |
+
gr.Row(visible=False),
|
| 393 |
+
gr.Row(visible=False),
|
| 394 |
+
gr.Image(visible=False),
|
| 395 |
+
textbox_create_ui(visible=False),
|
| 396 |
+
gr.Row(visible=False),
|
| 397 |
+
gr.Image(visible=False),
|
| 398 |
+
textbox_create_ui(visible=False),
|
| 399 |
+
gr.Row(visible=False),
|
| 400 |
+
gr.Row(visible=False),
|
| 401 |
+
gr.Image(visible=False),
|
| 402 |
+
textbox_create_ui(visible=False),
|
| 403 |
+
gr.Row(visible=False),
|
| 404 |
+
gr.Image(visible=False),
|
| 405 |
+
textbox_create_ui(visible=False),
|
| 406 |
+
html_message(
|
| 407 |
+
config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights),
|
| 408 |
+
False,
|
| 409 |
+
True,
|
| 410 |
+
),
|
| 411 |
+
)
|
| 412 |
+
else:
|
| 413 |
+
b5._candidate_ranking(
|
| 414 |
+
df_files=pt_scores.iloc[:, 1:],
|
| 415 |
+
weigths_openness=number_openness,
|
| 416 |
+
weigths_conscientiousness=number_conscientiousness,
|
| 417 |
+
weigths_extraversion=number_extraversion,
|
| 418 |
+
weigths_agreeableness=number_agreeableness,
|
| 419 |
+
weigths_non_neuroticism=number_non_neuroticism,
|
| 420 |
+
out=False,
|
| 421 |
+
)
|
| 422 |
|
| 423 |
+
df = apply_rounding_and_rename_columns(b5.df_files_ranking_)
|
| 424 |
|
| 425 |
+
df_hidden = df.drop(
|
| 426 |
+
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
|
| 427 |
+
)
|
| 428 |
|
| 429 |
+
df_hidden.to_csv(config_data.Filenames_POTENTIAL_CANDIDATES)
|
|
|
|
|
|
|
| 430 |
|
| 431 |
+
df_hidden.reset_index(inplace=True)
|
| 432 |
|
| 433 |
+
person_id = (
|
| 434 |
+
int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
person_metadata = create_person_metadata(
|
| 438 |
+
person_id, files, video_metadata
|
| 439 |
+
)
|
| 440 |
+
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
| 441 |
+
all_hidden_dfs = []
|
| 442 |
+
|
| 443 |
+
for dropdown_candidate in config_data.Settings_DROPDOWN_CANDIDATES[:-1]:
|
| 444 |
+
weights, _ = extract_profession_weights(
|
| 445 |
+
df_traits_priority_for_professions,
|
| 446 |
+
dropdown_candidate,
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
sum_weights = sum(weights)
|
| 450 |
+
|
| 451 |
+
if sum_weights != 100:
|
| 452 |
+
gr.Warning(
|
| 453 |
+
config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights)
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
return (
|
| 457 |
+
gr.Row(visible=False),
|
| 458 |
+
gr.Column(visible=False),
|
| 459 |
+
dataframe(visible=False),
|
| 460 |
+
files_create_ui(
|
| 461 |
+
None,
|
| 462 |
+
"single",
|
| 463 |
+
[".csv"],
|
| 464 |
+
config_data.OtherMessages_EXPORT_PS,
|
| 465 |
+
True,
|
| 466 |
+
False,
|
| 467 |
+
False,
|
| 468 |
+
"csv-container",
|
| 469 |
+
),
|
| 470 |
+
gr.Accordion(visible=False),
|
| 471 |
+
gr.HTML(visible=False),
|
| 472 |
+
dataframe(visible=False),
|
| 473 |
+
gr.Column(visible=False),
|
| 474 |
+
video_create_ui(visible=False),
|
| 475 |
+
gr.Column(visible=False),
|
| 476 |
+
gr.Row(visible=False),
|
| 477 |
+
gr.Row(visible=False),
|
| 478 |
+
gr.Image(visible=False),
|
| 479 |
+
textbox_create_ui(visible=False),
|
| 480 |
+
gr.Row(visible=False),
|
| 481 |
+
gr.Image(visible=False),
|
| 482 |
+
textbox_create_ui(visible=False),
|
| 483 |
+
gr.Row(visible=False),
|
| 484 |
+
gr.Row(visible=False),
|
| 485 |
+
gr.Image(visible=False),
|
| 486 |
+
textbox_create_ui(visible=False),
|
| 487 |
+
gr.Row(visible=False),
|
| 488 |
+
gr.Image(visible=False),
|
| 489 |
+
textbox_create_ui(visible=False),
|
| 490 |
+
html_message(
|
| 491 |
+
config_data.InformationMessages_SUM_WEIGHTS.format(
|
| 492 |
+
sum_weights
|
| 493 |
+
),
|
| 494 |
+
False,
|
| 495 |
+
True,
|
| 496 |
+
),
|
| 497 |
+
)
|
| 498 |
+
else:
|
| 499 |
+
b5._candidate_ranking(
|
| 500 |
+
df_files=pt_scores.iloc[:, 1:],
|
| 501 |
+
weigths_openness=weights[0],
|
| 502 |
+
weigths_conscientiousness=weights[1],
|
| 503 |
+
weigths_extraversion=weights[2],
|
| 504 |
+
weigths_agreeableness=weights[3],
|
| 505 |
+
weigths_non_neuroticism=weights[4],
|
| 506 |
+
out=False,
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
df = apply_rounding_and_rename_columns(b5.df_files_ranking_)
|
| 510 |
+
|
| 511 |
+
df_hidden = df.drop(
|
| 512 |
+
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
|
| 513 |
+
+ config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
df_hidden.insert(0, "Professional Group", dropdown_candidate)
|
| 517 |
+
|
| 518 |
+
all_hidden_dfs.append(df_hidden)
|
| 519 |
+
|
| 520 |
+
df_hidden = pd.concat(all_hidden_dfs, ignore_index=True)
|
| 521 |
+
|
| 522 |
+
df_hidden.rename(
|
| 523 |
+
columns={
|
| 524 |
+
"Candidate score": "Summary Score",
|
| 525 |
+
},
|
| 526 |
+
inplace=True,
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
df_hidden = df_hidden.sort_values(by="Summary Score", ascending=False)
|
| 530 |
+
|
| 531 |
+
df_hidden.reset_index(drop=True, inplace=True)
|
| 532 |
|
| 533 |
+
df_hidden.to_csv(
|
| 534 |
+
config_data.Filenames_POTENTIAL_CANDIDATES, index=False
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
person_id = 0
|
| 538 |
+
|
| 539 |
+
person_metadata = create_person_metadata(
|
| 540 |
+
person_id, files, video_metadata
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
existing_tuple = (
|
| 544 |
+
gr.Row(visible=True),
|
| 545 |
+
gr.Column(visible=True),
|
| 546 |
+
dataframe(
|
| 547 |
+
headers=df_hidden.columns.tolist(),
|
| 548 |
+
values=df_hidden.values.tolist(),
|
| 549 |
+
visible=True,
|
| 550 |
+
),
|
| 551 |
+
files_create_ui(
|
| 552 |
+
config_data.Filenames_POTENTIAL_CANDIDATES,
|
| 553 |
+
"single",
|
| 554 |
+
[".csv"],
|
| 555 |
+
config_data.OtherMessages_EXPORT_PG,
|
| 556 |
+
True,
|
| 557 |
+
False,
|
| 558 |
+
True,
|
| 559 |
+
"csv-container",
|
| 560 |
+
),
|
| 561 |
+
gr.Accordion(visible=False),
|
| 562 |
+
gr.HTML(visible=False),
|
| 563 |
+
dataframe(visible=False),
|
| 564 |
+
gr.Column(visible=True),
|
| 565 |
+
video_create_ui(
|
| 566 |
+
value=files[person_id],
|
| 567 |
+
file_name=Path(files[person_id]).name,
|
| 568 |
+
label="Best Person ID - " + str(person_id + 1),
|
| 569 |
+
visible=True,
|
| 570 |
+
elem_classes="video-sorted-container",
|
| 571 |
+
),
|
| 572 |
+
html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False),
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
return existing_tuple[:-1] + person_metadata + existing_tuple[-1:]
|
| 576 |
elif practical_subtasks.lower() == "professional skills":
|
| 577 |
df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS)
|
| 578 |
|
app/event_handlers/calculate_pt_scores_blocks.py
CHANGED
|
@@ -25,14 +25,10 @@ from app.components import (
|
|
| 25 |
textbox_create_ui,
|
| 26 |
)
|
| 27 |
|
| 28 |
-
import time
|
| 29 |
-
|
| 30 |
|
| 31 |
def event_handler_calculate_pt_scores_blocks(
|
| 32 |
language, type_modes, files, video, evt_data: gr.EventData
|
| 33 |
):
|
| 34 |
-
time.sleep(2000)
|
| 35 |
-
|
| 36 |
_ = evt_data.target.__class__.__name__
|
| 37 |
|
| 38 |
lang_id, _ = get_language_settings(language)
|
|
|
|
| 25 |
textbox_create_ui,
|
| 26 |
)
|
| 27 |
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def event_handler_calculate_pt_scores_blocks(
|
| 30 |
language, type_modes, files, video, evt_data: gr.EventData
|
| 31 |
):
|
|
|
|
|
|
|
| 32 |
_ = evt_data.target.__class__.__name__
|
| 33 |
|
| 34 |
lang_id, _ = get_language_settings(language)
|
app/event_handlers/dropdown_candidates.py
CHANGED
|
@@ -7,16 +7,13 @@ License: MIT License
|
|
| 7 |
|
| 8 |
# Importing necessary components for the Gradio app
|
| 9 |
from app.config import config_data
|
| 10 |
-
from app.utils import
|
|
|
|
| 11 |
from app.components import number_create_ui
|
| 12 |
|
| 13 |
|
| 14 |
def event_handler_dropdown_candidates(practical_subtasks, dropdown_candidates):
|
| 15 |
if practical_subtasks.lower() == "professional groups":
|
| 16 |
-
df_traits_priority_for_professions = read_csv_file(
|
| 17 |
-
config_data.Links_PROFESSIONS
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
weights, interactive = extract_profession_weights(
|
| 21 |
df_traits_priority_for_professions,
|
| 22 |
dropdown_candidates,
|
|
|
|
| 7 |
|
| 8 |
# Importing necessary components for the Gradio app
|
| 9 |
from app.config import config_data
|
| 10 |
+
from app.utils import extract_profession_weights
|
| 11 |
+
from app.data_init import df_traits_priority_for_professions
|
| 12 |
from app.components import number_create_ui
|
| 13 |
|
| 14 |
|
| 15 |
def event_handler_dropdown_candidates(practical_subtasks, dropdown_candidates):
|
| 16 |
if practical_subtasks.lower() == "professional groups":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
weights, interactive = extract_profession_weights(
|
| 18 |
df_traits_priority_for_professions,
|
| 19 |
dropdown_candidates,
|
app/event_handlers/practical_subtasks.py
CHANGED
|
@@ -9,7 +9,8 @@ import gradio as gr
|
|
| 9 |
|
| 10 |
# Importing necessary components for the Gradio app
|
| 11 |
from app.config import config_data
|
| 12 |
-
from app.utils import read_csv_file,
|
|
|
|
| 13 |
from app.components import number_create_ui, dropdown_create_ui
|
| 14 |
|
| 15 |
|
|
@@ -72,14 +73,6 @@ def event_handler_practical_subtasks(
|
|
| 72 |
number_create_ui(visible=False),
|
| 73 |
)
|
| 74 |
elif practical_subtasks.lower() == "professional groups":
|
| 75 |
-
df_traits_priority_for_professions = read_csv_file(
|
| 76 |
-
config_data.Links_PROFESSIONS
|
| 77 |
-
)
|
| 78 |
-
weights_professions, interactive_professions = extract_profession_weights(
|
| 79 |
-
df_traits_priority_for_professions,
|
| 80 |
-
config_data.Settings_DROPDOWN_CANDIDATES[0],
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
return (
|
| 84 |
practical_subtasks_selected,
|
| 85 |
gr.Column(visible=visible_subtasks),
|
|
|
|
| 9 |
|
| 10 |
# Importing necessary components for the Gradio app
|
| 11 |
from app.config import config_data
|
| 12 |
+
from app.utils import read_csv_file, get_language_settings
|
| 13 |
+
from app.data_init import weights_professions, interactive_professions
|
| 14 |
from app.components import number_create_ui, dropdown_create_ui
|
| 15 |
|
| 16 |
|
|
|
|
| 73 |
number_create_ui(visible=False),
|
| 74 |
)
|
| 75 |
elif practical_subtasks.lower() == "professional groups":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
return (
|
| 77 |
practical_subtasks_selected,
|
| 78 |
gr.Column(visible=visible_subtasks),
|
app/tabs.py
CHANGED
|
@@ -13,10 +13,11 @@ from app.description_steps import STEP_1, STEP_2
|
|
| 13 |
from app.mbti_description import MBTI_DESCRIPTION, MBTI_DATA
|
| 14 |
from app.app import APP
|
| 15 |
from app.authors import AUTHORS
|
|
|
|
| 16 |
from app.requirements_app import read_requirements_to_df
|
| 17 |
from app.config import config_data
|
| 18 |
from app.practical_tasks import supported_practical_tasks
|
| 19 |
-
from app.utils import read_csv_file
|
| 20 |
from app.components import (
|
| 21 |
html_message,
|
| 22 |
files_create_ui,
|
|
@@ -386,14 +387,6 @@ def app_tab():
|
|
| 386 |
elem_classes="dropdown-container",
|
| 387 |
)
|
| 388 |
|
| 389 |
-
df_traits_priority_for_professions = read_csv_file(
|
| 390 |
-
config_data.Links_PROFESSIONS
|
| 391 |
-
)
|
| 392 |
-
weights_professions, interactive_professions = extract_profession_weights(
|
| 393 |
-
df_traits_priority_for_professions,
|
| 394 |
-
config_data.Settings_DROPDOWN_CANDIDATES[0],
|
| 395 |
-
)
|
| 396 |
-
|
| 397 |
number_openness = number_create_ui(
|
| 398 |
value=weights_professions[0],
|
| 399 |
minimum=config_data.Values_0_100[0],
|
|
|
|
| 13 |
from app.mbti_description import MBTI_DESCRIPTION, MBTI_DATA
|
| 14 |
from app.app import APP
|
| 15 |
from app.authors import AUTHORS
|
| 16 |
+
from app.data_init import weights_professions, interactive_professions
|
| 17 |
from app.requirements_app import read_requirements_to_df
|
| 18 |
from app.config import config_data
|
| 19 |
from app.practical_tasks import supported_practical_tasks
|
| 20 |
+
from app.utils import read_csv_file
|
| 21 |
from app.components import (
|
| 22 |
html_message,
|
| 23 |
files_create_ui,
|
|
|
|
| 387 |
elem_classes="dropdown-container",
|
| 388 |
)
|
| 389 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
number_openness = number_create_ui(
|
| 391 |
value=weights_professions[0],
|
| 392 |
minimum=config_data.Values_0_100[0],
|
config.toml
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
[AppSettings]
|
| 2 |
-
APP_VERSION = "0.10.
|
| 3 |
SERVER_NAME = "127.0.0.1"
|
| 4 |
PORT = 7860
|
| 5 |
CSS_PATH = "app.css"
|
|
@@ -148,7 +148,7 @@ DROPDOWN_MBTI = [
|
|
| 148 |
"The Commander (ENTJ): Construction Supervisor, Health Services Administrator, Financial Accountant, Auditor, Lawyer, School Principal, Chemical Engineer, Database Manager, etc.",
|
| 149 |
]
|
| 150 |
DROPDOWN_MBTI_DEL_COLS = ["EI", "SN", "TF", "JP", "Match"]
|
| 151 |
-
DROPDOWN_MBTI_DEL_COLS_WEBCAM = ["
|
| 152 |
SHOW_VIDEO_METADATA = true
|
| 153 |
SUPPORTED_VIDEO_EXT = ["mp4", "mov", "avi", "flv"]
|
| 154 |
TYPE_MODES = ["Files", "Web"]
|
|
|
|
| 1 |
[AppSettings]
|
| 2 |
+
APP_VERSION = "0.10.4"
|
| 3 |
SERVER_NAME = "127.0.0.1"
|
| 4 |
PORT = 7860
|
| 5 |
CSS_PATH = "app.css"
|
|
|
|
| 148 |
"The Commander (ENTJ): Construction Supervisor, Health Services Administrator, Financial Accountant, Auditor, Lawyer, School Principal, Chemical Engineer, Database Manager, etc.",
|
| 149 |
]
|
| 150 |
DROPDOWN_MBTI_DEL_COLS = ["EI", "SN", "TF", "JP", "Match"]
|
| 151 |
+
DROPDOWN_MBTI_DEL_COLS_WEBCAM = ["Path"]
|
| 152 |
SHOW_VIDEO_METADATA = true
|
| 153 |
SUPPORTED_VIDEO_EXT = ["mp4", "mov", "avi", "flv"]
|
| 154 |
TYPE_MODES = ["Files", "Web"]
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
gradio==5.
|
| 2 |
PyYAML==6.0.2
|
| 3 |
toml==0.10.2
|
| 4 |
oceanai==1.0.0a46
|
|
|
|
| 1 |
+
gradio==5.7.1
|
| 2 |
PyYAML==6.0.2
|
| 3 |
toml==0.10.2
|
| 4 |
oceanai==1.0.0a46
|