Dmitry Ryumin's picture

Dmitry Ryumin

DmitryRyumin

AI & ML interests

Machine Learning and Applications, Multi-Modal Understanding

Recent Activity

reacted to their post with šŸ”„ 4 days ago
šŸš€šŸŽ­šŸŒŸ New Research Alert - WACV 2025 (Avatars Collection)! šŸŒŸšŸŽ­šŸš€ šŸ“„ Title: EmoVOCA: Speech-Driven Emotional 3D Talking Heads šŸ” šŸ“ Description: EmoVOCA is a data-driven method for generating emotional 3D talking heads by combining speech-driven lip movements with expressive facial dynamics. This method has been developed to overcome the limitations of corpora and to achieve state-of-the-art animation quality. šŸ‘„ Authors: @FedeNoce, Claudio Ferrari, and Stefano Berretti šŸ“… Conference: WACV, 28 Feb ā€“ 4 Mar, 2025 | Arizona, USA šŸ‡ŗšŸ‡ø šŸ“„ Paper: https://arxiv.org/abs/2403.12886 šŸŒ Github Page: https://fedenoce.github.io/emovoca/ šŸ“ Repository: https://github.com/miccunifi/EmoVOCA šŸš€ CVPR-2023-24-Papers: https://github.com/DmitryRyumin/CVPR-2023-24-Papers šŸš€ WACV-2024-Papers: https://github.com/DmitryRyumin/WACV-2024-Papers šŸš€ ICCV-2023-Papers: https://github.com/DmitryRyumin/ICCV-2023-Papers šŸ“š More Papers: more cutting-edge research presented at other conferences in the https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin šŸš€ Added to the Avatars Collection: https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36 šŸ” Keywords: #EmoVOCA #3DAnimation #TalkingHeads #SpeechDriven #FacialExpressions #MachineLearning #ComputerVision #ComputerGraphics #DeepLearning #AI #WACV2024
posted an update 4 days ago
šŸš€šŸŽ­šŸŒŸ New Research Alert - WACV 2025 (Avatars Collection)! šŸŒŸšŸŽ­šŸš€ šŸ“„ Title: EmoVOCA: Speech-Driven Emotional 3D Talking Heads šŸ” šŸ“ Description: EmoVOCA is a data-driven method for generating emotional 3D talking heads by combining speech-driven lip movements with expressive facial dynamics. This method has been developed to overcome the limitations of corpora and to achieve state-of-the-art animation quality. šŸ‘„ Authors: @FedeNoce, Claudio Ferrari, and Stefano Berretti šŸ“… Conference: WACV, 28 Feb ā€“ 4 Mar, 2025 | Arizona, USA šŸ‡ŗšŸ‡ø šŸ“„ Paper: https://arxiv.org/abs/2403.12886 šŸŒ Github Page: https://fedenoce.github.io/emovoca/ šŸ“ Repository: https://github.com/miccunifi/EmoVOCA šŸš€ CVPR-2023-24-Papers: https://github.com/DmitryRyumin/CVPR-2023-24-Papers šŸš€ WACV-2024-Papers: https://github.com/DmitryRyumin/WACV-2024-Papers šŸš€ ICCV-2023-Papers: https://github.com/DmitryRyumin/ICCV-2023-Papers šŸ“š More Papers: more cutting-edge research presented at other conferences in the https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin šŸš€ Added to the Avatars Collection: https://huggingface.co/collections/DmitryRyumin/avatars-65df37cdf81fec13d4dbac36 šŸ” Keywords: #EmoVOCA #3DAnimation #TalkingHeads #SpeechDriven #FacialExpressions #MachineLearning #ComputerVision #ComputerGraphics #DeepLearning #AI #WACV2024
updated a collection 4 days ago
šŸŽ­ Avatars
View all activity

Organizations

Gradio-Themes-Party's profile picture Gradio-Blocks-Party's profile picture Blog-explorers's profile picture New Era Artificial Intelligence's profile picture ICCV2023's profile picture ZeroGPU Explorers's profile picture Journalists on Hugging Face's profile picture Social Post Explorers's profile picture Dev Mode Explorers's profile picture

Posts 64

view post
Post
3437
šŸš€šŸŽ­šŸŒŸ New Research Alert - WACV 2025 (Avatars Collection)! šŸŒŸšŸŽ­šŸš€
šŸ“„ Title: EmoVOCA: Speech-Driven Emotional 3D Talking Heads šŸ”

šŸ“ Description: EmoVOCA is a data-driven method for generating emotional 3D talking heads by combining speech-driven lip movements with expressive facial dynamics. This method has been developed to overcome the limitations of corpora and to achieve state-of-the-art animation quality.

šŸ‘„ Authors: @FedeNoce , Claudio Ferrari, and Stefano Berretti

šŸ“… Conference: WACV, 28 Feb ā€“ 4 Mar, 2025 | Arizona, USA šŸ‡ŗšŸ‡ø

šŸ“„ Paper: https://arxiv.org/abs/2403.12886

šŸŒ Github Page: https://fedenoce.github.io/emovoca/
šŸ“ Repository: https://github.com/miccunifi/EmoVOCA

šŸš€ CVPR-2023-24-Papers: https://github.com/DmitryRyumin/CVPR-2023-24-Papers

šŸš€ WACV-2024-Papers: https://github.com/DmitryRyumin/WACV-2024-Papers

šŸš€ ICCV-2023-Papers: https://github.com/DmitryRyumin/ICCV-2023-Papers

šŸ“š More Papers: more cutting-edge research presented at other conferences in the DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin

šŸš€ Added to the Avatars Collection: DmitryRyumin/avatars-65df37cdf81fec13d4dbac36

šŸ” Keywords: #EmoVOCA #3DAnimation #TalkingHeads #SpeechDriven #FacialExpressions #MachineLearning #ComputerVision #ComputerGraphics #DeepLearning #AI #WACV2024
view post
Post
2716
šŸ”„šŸŽ­šŸŒŸ New Research Alert - HeadGAP (Avatars Collection)! šŸŒŸšŸŽ­šŸ”„
šŸ“„ Title: HeadGAP: Few-shot 3D Head Avatar via Generalizable Gaussian Priors šŸ”

šŸ“ Description: HeadGAP introduces a novel method for generating high-fidelity, animatable 3D head avatars from few-shot data, using Gaussian priors and dynamic part-based modelling for personalized and generalizable results.

šŸ‘„ Authors: @zxz267 , @walsvid , @zhaohu2 , Weiyi Zhang, @hellozhuo , Xu Chang, Yang Zhao, Zheng Lv, Xiaoyuan Zhang, @yongjie-zhang-mail , Guidong Wang, and Lan Xu

šŸ“„ Paper: HeadGAP: Few-shot 3D Head Avatar via Generalizable Gaussian Priors (2408.06019)

šŸŒ Github Page: https://headgap.github.io

šŸš€ CVPR-2023-24-Papers: https://github.com/DmitryRyumin/CVPR-2023-24-Papers

šŸš€ WACV-2024-Papers: https://github.com/DmitryRyumin/WACV-2024-Papers

šŸš€ ICCV-2023-Papers: https://github.com/DmitryRyumin/ICCV-2023-Papers

šŸ“š More Papers: more cutting-edge research presented at other conferences in the DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin

šŸš€ Added to the Avatars Collection: DmitryRyumin/avatars-65df37cdf81fec13d4dbac36

šŸ” Keywords: #HeadGAP #3DAvatar #FewShotLearning #GaussianPriors #AvatarCreation #3DModeling #MachineLearning #ComputerVision #ComputerGraphics #GenerativeAI #DeepLearning #AI

models

None public yet

datasets

None public yet