test-space-mas / app.py
DrishtiSharma's picture
Update app.py
269ef43 verified
import os
import json
import re
import base64
import streamlit as st
from io import BytesIO
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_core.messages import (
AIMessage,
BaseMessage,
ChatMessage,
FunctionMessage,
HumanMessage,
)
from langchain.tools.render import format_tool_to_openai_function
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import END, StateGraph
from langgraph.prebuilt.tool_executor import ToolExecutor, ToolInvocation
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.utilities import PythonREPL
from langchain_openai import ChatOpenAI
from typing import Annotated, Sequence
from typing_extensions import TypedDict
import operator
import functools
import matplotlib.pyplot as plt
# Set up environment variables for API keys
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# Validate API keys
if not TAVILY_API_KEY or not OPENAI_API_KEY:
st.error("API keys are missing. Please set TAVILY_API_KEY and OPENAI_API_KEY as secrets.")
st.stop()
# Define the AgentState class
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
sender: str
# Initialize tools
tavily_tool = TavilySearchResults(max_results=5)
repl = PythonREPL()
@tool
def python_repl(code: Annotated[str, "The python code to execute to generate your chart."]):
"""Executes Python code to generate a chart and returns the chart as a base64-encoded image."""
try:
# Execute the code
exec_globals = {"plt": plt}
exec_locals = {}
exec(code, exec_globals, exec_locals)
# Save the generated plot to a buffer
buf = BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
# Clear the plot to avoid overlapping
plt.clf()
plt.close()
# Encode image as base64
encoded_image = base64.b64encode(buf.getvalue()).decode("utf-8")
return {"status": "success", "image": encoded_image}
except Exception as e:
return {"status": "failed", "error": repr(e)}
tools = [tavily_tool, python_repl]
# Define a tool executor
tool_executor = ToolExecutor(tools)
# Define tool node
def tool_node(state):
"""Executes tools in the graph."""
messages = state["messages"]
last_message = messages[-1]
tool_input = json.loads(last_message.additional_kwargs["function_call"]["arguments"])
if len(tool_input) == 1 and "__arg1" in tool_input:
tool_input = next(iter(tool_input.values()))
tool_name = last_message.additional_kwargs["function_call"]["name"]
action = ToolInvocation(tool=tool_name, tool_input=tool_input)
response = tool_executor.invoke(action)
if isinstance(response, dict) and response.get("status") == "success" and "image" in response:
return {
"messages": [
{
"role": "assistant",
"content": "Image generated successfully.",
"image": response["image"],
}
]
}
else:
function_message = FunctionMessage(
content=f"{tool_name} response: {str(response)}", name=action.tool
)
return {"messages": [function_message]}
# Define router
def router(state):
"""Determines the next step in the workflow."""
messages = state["messages"]
last_message = messages[-1]
if "function_call" in last_message.additional_kwargs:
return "call_tool"
if "FINAL ANSWER" in last_message.content:
return "end"
return "continue"
# Define agent creation function
def create_agent(llm, tools, system_message: str):
"""Creates an agent."""
functions = [convert_to_openai_function(t) for t in tools]
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful AI assistant, collaborating with other assistants."
" Use the provided tools to progress towards answering the question."
" If you are unable to fully answer, that's OK, another assistant with different tools "
" will help where you left off. Execute what you can to make progress."
" If you or any of the other assistants have the final answer or deliverable,"
" prefix your response with FINAL ANSWER so the team knows to stop."
" You have access to the following tools: {tool_names}.\n{system_message}",
),
MessagesPlaceholder(variable_name="messages"),
]
)
prompt = prompt.partial(system_message=system_message)
prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools]))
return prompt | llm.bind_functions(functions)
# Define agent node
def agent_node(state, agent, name):
result = agent.invoke(state)
if isinstance(result, FunctionMessage):
pass
else:
# Sanitize the name field to match OpenAI's naming conventions
sanitized_name = re.sub(r"[^a-zA-Z0-9_-]", "_", name)
result = HumanMessage(**result.dict(exclude={"type", "name"}), name=sanitized_name)
return {"messages": [result], "sender": name}
# Initialize LLM
llm = ChatOpenAI(api_key=OPENAI_API_KEY)
# Create agents
research_agent = create_agent(
llm, [tavily_tool], system_message="You should provide accurate data for the chart generator to use."
)
chart_agent = create_agent(
llm, [python_repl], system_message="Any charts you display will be visible by the user."
)
# Define workflow graph
workflow = StateGraph(AgentState)
workflow.add_node("Researcher", functools.partial(agent_node, agent=research_agent, name="Researcher"))
workflow.add_node("Chart Generator", functools.partial(agent_node, agent=chart_agent, name="Chart Generator"))
workflow.add_node("call_tool", tool_node)
workflow.add_conditional_edges("Researcher", router, {"continue": "Chart Generator", "call_tool": "call_tool", "end": END})
workflow.add_conditional_edges("Chart Generator", router, {"continue": "Researcher", "call_tool": "call_tool", "end": END})
workflow.add_conditional_edges("call_tool", lambda x: x["sender"], {"Researcher": "Researcher", "Chart Generator": "Chart Generator"})
workflow.set_entry_point("Researcher")
graph = workflow.compile()
# Streamlit UI
st.title("Multi-Agent Workflow")
user_query = st.text_area("Enter your query:", "Fetch Malaysia's GDP over the past 5 years and draw a line graph.")
if st.button("Run Workflow"):
st.write("Running workflow...")
with st.spinner("Processing..."):
try:
messages = [HumanMessage(content=user_query)]
for step in graph.stream({"messages": messages}, {"recursion_limit": 150}):
st.write("Step Details:", step)
if "messages" in step:
for message in step["messages"]:
if "image" in message:
try:
# Decode the base64-encoded image
encoded_image = message["image"]
decoded_image = BytesIO(base64.b64decode(encoded_image))
# Display the image
st.image(decoded_image, caption="Generated Chart", use_column_width=True)
except Exception as e:
st.error(f"Failed to decode and display the image: {repr(e)}")
elif "content" in message:
# Display any text content
st.write(message["content"])
except Exception as e:
st.error(f"An error occurred: {e}")