File size: 7,889 Bytes
693beb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269ef43
693beb7
 
 
 
 
 
 
 
 
 
 
 
 
269ef43
693beb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269ef43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693beb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b954d1b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import json
import re
import base64
import streamlit as st
from io import BytesIO
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    ChatMessage,
    FunctionMessage,
    HumanMessage,
)
from langchain.tools.render import format_tool_to_openai_function
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import END, StateGraph
from langgraph.prebuilt.tool_executor import ToolExecutor, ToolInvocation
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.utilities import PythonREPL
from langchain_openai import ChatOpenAI
from typing import Annotated, Sequence
from typing_extensions import TypedDict
import operator
import functools
import matplotlib.pyplot as plt

# Set up environment variables for API keys
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

# Validate API keys
if not TAVILY_API_KEY or not OPENAI_API_KEY:
    st.error("API keys are missing. Please set TAVILY_API_KEY and OPENAI_API_KEY as secrets.")
    st.stop()

# Define the AgentState class
class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    sender: str

# Initialize tools
tavily_tool = TavilySearchResults(max_results=5)
repl = PythonREPL()

@tool
def python_repl(code: Annotated[str, "The python code to execute to generate your chart."]):
    """Executes Python code to generate a chart and returns the chart as a base64-encoded image."""
    try:
        # Execute the code
        exec_globals = {"plt": plt}
        exec_locals = {}
        exec(code, exec_globals, exec_locals)

        # Save the generated plot to a buffer
        buf = BytesIO()
        plt.savefig(buf, format="png")
        buf.seek(0)

        # Clear the plot to avoid overlapping
        plt.clf()
        plt.close()

        # Encode image as base64
        encoded_image = base64.b64encode(buf.getvalue()).decode("utf-8")
        return {"status": "success", "image": encoded_image}
    except Exception as e:
        return {"status": "failed", "error": repr(e)}

tools = [tavily_tool, python_repl]

# Define a tool executor
tool_executor = ToolExecutor(tools)

# Define tool node
def tool_node(state):
    """Executes tools in the graph."""
    messages = state["messages"]
    last_message = messages[-1]
    tool_input = json.loads(last_message.additional_kwargs["function_call"]["arguments"])
    if len(tool_input) == 1 and "__arg1" in tool_input:
        tool_input = next(iter(tool_input.values()))
    tool_name = last_message.additional_kwargs["function_call"]["name"]
    action = ToolInvocation(tool=tool_name, tool_input=tool_input)
    response = tool_executor.invoke(action)
    if isinstance(response, dict) and response.get("status") == "success" and "image" in response:
        return {
            "messages": [
                {
                    "role": "assistant",
                    "content": "Image generated successfully.",
                    "image": response["image"],
                }
            ]
        }
    else:
        function_message = FunctionMessage(
            content=f"{tool_name} response: {str(response)}", name=action.tool
        )
        return {"messages": [function_message]}

# Define router
def router(state):
    """Determines the next step in the workflow."""
    messages = state["messages"]
    last_message = messages[-1]
    if "function_call" in last_message.additional_kwargs:
        return "call_tool"
    if "FINAL ANSWER" in last_message.content:
        return "end"
    return "continue"

# Define agent creation function
def create_agent(llm, tools, system_message: str):
    """Creates an agent."""
    functions = [convert_to_openai_function(t) for t in tools]
    prompt = ChatPromptTemplate.from_messages(
        [
            (
                "system",
                "You are a helpful AI assistant, collaborating with other assistants."
                " Use the provided tools to progress towards answering the question."
                " If you are unable to fully answer, that's OK, another assistant with different tools "
                " will help where you left off. Execute what you can to make progress."
                " If you or any of the other assistants have the final answer or deliverable,"
                " prefix your response with FINAL ANSWER so the team knows to stop."
                " You have access to the following tools: {tool_names}.\n{system_message}",
            ),
            MessagesPlaceholder(variable_name="messages"),
        ]
    )
    prompt = prompt.partial(system_message=system_message)
    prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools]))
    return prompt | llm.bind_functions(functions)

# Define agent node
def agent_node(state, agent, name):
    result = agent.invoke(state)
    if isinstance(result, FunctionMessage):
        pass
    else:
        # Sanitize the name field to match OpenAI's naming conventions
        sanitized_name = re.sub(r"[^a-zA-Z0-9_-]", "_", name)
        result = HumanMessage(**result.dict(exclude={"type", "name"}), name=sanitized_name)
    return {"messages": [result], "sender": name}

# Initialize LLM
llm = ChatOpenAI(api_key=OPENAI_API_KEY)

# Create agents
research_agent = create_agent(
    llm, [tavily_tool], system_message="You should provide accurate data for the chart generator to use."
)
chart_agent = create_agent(
    llm, [python_repl], system_message="Any charts you display will be visible by the user."
)

# Define workflow graph
workflow = StateGraph(AgentState)
workflow.add_node("Researcher", functools.partial(agent_node, agent=research_agent, name="Researcher"))
workflow.add_node("Chart Generator", functools.partial(agent_node, agent=chart_agent, name="Chart Generator"))
workflow.add_node("call_tool", tool_node)
workflow.add_conditional_edges("Researcher", router, {"continue": "Chart Generator", "call_tool": "call_tool", "end": END})
workflow.add_conditional_edges("Chart Generator", router, {"continue": "Researcher", "call_tool": "call_tool", "end": END})
workflow.add_conditional_edges("call_tool", lambda x: x["sender"], {"Researcher": "Researcher", "Chart Generator": "Chart Generator"})
workflow.set_entry_point("Researcher")
graph = workflow.compile()

# Streamlit UI
st.title("Multi-Agent Workflow")
user_query = st.text_area("Enter your query:", "Fetch Malaysia's GDP over the past 5 years and draw a line graph.")
if st.button("Run Workflow"):
    st.write("Running workflow...")
    with st.spinner("Processing..."):
        try:
            messages = [HumanMessage(content=user_query)]
            for step in graph.stream({"messages": messages}, {"recursion_limit": 150}):
                st.write("Step Details:", step)
                if "messages" in step:
                    for message in step["messages"]:
                        if "image" in message:
                            try:
                                # Decode the base64-encoded image
                                encoded_image = message["image"]
                                decoded_image = BytesIO(base64.b64decode(encoded_image))
                                # Display the image
                                st.image(decoded_image, caption="Generated Chart", use_column_width=True)
                            except Exception as e:
                                st.error(f"Failed to decode and display the image: {repr(e)}")
                        elif "content" in message:
                            # Display any text content
                            st.write(message["content"])
        except Exception as e:
            st.error(f"An error occurred: {e}")