Update app.py
Browse files
app.py
CHANGED
@@ -36,13 +36,13 @@ if "chunked" not in st.session_state:
|
|
36 |
if "vector_created" not in st.session_state:
|
37 |
st.session_state.vector_created = False
|
38 |
if "vector_store_path" not in st.session_state:
|
39 |
-
st.session_state.vector_store_path = "./chroma_langchain_db"
|
40 |
if "vector_store" not in st.session_state:
|
41 |
st.session_state.vector_store = None
|
42 |
if "documents" not in st.session_state:
|
43 |
st.session_state.documents = None
|
44 |
|
45 |
-
#
|
46 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
47 |
|
48 |
if pdf_source == "Upload a PDF file":
|
@@ -84,13 +84,13 @@ if st.session_state.pdf_path and not st.session_state.pdf_loaded:
|
|
84 |
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
85 |
|
86 |
# Step 3: Chunking
|
87 |
-
if st.session_state.pdf_loaded and not st.session_state.chunked:
|
88 |
with st.spinner("Chunking the document..."):
|
89 |
model_name = "nomic-ai/modernbert-embed-base"
|
90 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
|
91 |
text_splitter = SemanticChunker(embedding_model)
|
92 |
documents = text_splitter.split_documents(st.session_state.documents)
|
93 |
-
st.session_state.documents = documents
|
94 |
st.session_state.chunked = True
|
95 |
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
96 |
|
@@ -101,7 +101,7 @@ if st.session_state.chunked and not st.session_state.vector_created:
|
|
101 |
collection_name="deepseek_collection",
|
102 |
collection_metadata={"hnsw:space": "cosine"},
|
103 |
embedding_function=embedding_model,
|
104 |
-
persist_directory=st.session_state.vector_store_path
|
105 |
)
|
106 |
vector_store.add_documents(st.session_state.documents)
|
107 |
num_documents = len(vector_store.get()["documents"])
|
@@ -110,10 +110,10 @@ if st.session_state.chunked and not st.session_state.vector_created:
|
|
110 |
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
111 |
|
112 |
# Step 5: Query Input
|
113 |
-
if st.session_state.vector_created:
|
114 |
query = st.text_input("π Enter a Query:")
|
115 |
|
116 |
-
if query
|
117 |
with st.spinner("Retrieving relevant contexts..."):
|
118 |
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
119 |
contexts = retriever.invoke(query)
|
|
|
36 |
if "vector_created" not in st.session_state:
|
37 |
st.session_state.vector_created = False
|
38 |
if "vector_store_path" not in st.session_state:
|
39 |
+
st.session_state.vector_store_path = "./chroma_langchain_db"
|
40 |
if "vector_store" not in st.session_state:
|
41 |
st.session_state.vector_store = None
|
42 |
if "documents" not in st.session_state:
|
43 |
st.session_state.documents = None
|
44 |
|
45 |
+
# Step 1: Choose PDF Source
|
46 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
47 |
|
48 |
if pdf_source == "Upload a PDF file":
|
|
|
84 |
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
85 |
|
86 |
# Step 3: Chunking
|
87 |
+
if st.session_state.pdf_loaded and not st.session_state.chunked and st.session_state.documents:
|
88 |
with st.spinner("Chunking the document..."):
|
89 |
model_name = "nomic-ai/modernbert-embed-base"
|
90 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
|
91 |
text_splitter = SemanticChunker(embedding_model)
|
92 |
documents = text_splitter.split_documents(st.session_state.documents)
|
93 |
+
st.session_state.documents = documents # Store chunked docs
|
94 |
st.session_state.chunked = True
|
95 |
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
96 |
|
|
|
101 |
collection_name="deepseek_collection",
|
102 |
collection_metadata={"hnsw:space": "cosine"},
|
103 |
embedding_function=embedding_model,
|
104 |
+
persist_directory=st.session_state.vector_store_path
|
105 |
)
|
106 |
vector_store.add_documents(st.session_state.documents)
|
107 |
num_documents = len(vector_store.get()["documents"])
|
|
|
110 |
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
111 |
|
112 |
# Step 5: Query Input
|
113 |
+
if st.session_state.vector_created and st.session_state.vector_store:
|
114 |
query = st.text_input("π Enter a Query:")
|
115 |
|
116 |
+
if query:
|
117 |
with st.spinner("Retrieving relevant contexts..."):
|
118 |
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
119 |
contexts = retriever.invoke(query)
|