Update app.py
Browse files
app.py
CHANGED
@@ -26,11 +26,7 @@ chromadb.api.client.SharedSystemClient.clear_system_cache()
|
|
26 |
|
27 |
st.title("Blah")
|
28 |
|
29 |
-
# Initialize session state variables
|
30 |
-
if "vector_store" not in st.session_state:
|
31 |
-
st.session_state.vector_store = None
|
32 |
-
if "documents" not in st.session_state:
|
33 |
-
st.session_state.documents = None
|
34 |
if "pdf_path" not in st.session_state:
|
35 |
st.session_state.pdf_path = None
|
36 |
if "pdf_loaded" not in st.session_state:
|
@@ -39,8 +35,14 @@ if "chunked" not in st.session_state:
|
|
39 |
st.session_state.chunked = False
|
40 |
if "vector_created" not in st.session_state:
|
41 |
st.session_state.vector_created = False
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
# Step 1: Choose PDF Source
|
44 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
45 |
|
46 |
if pdf_source == "Upload a PDF file":
|
@@ -81,7 +83,7 @@ if st.session_state.pdf_path and not st.session_state.pdf_loaded:
|
|
81 |
st.session_state.pdf_loaded = True
|
82 |
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
83 |
|
84 |
-
# Step 3: Chunking
|
85 |
if st.session_state.pdf_loaded and not st.session_state.chunked:
|
86 |
with st.spinner("Chunking the document..."):
|
87 |
model_name = "nomic-ai/modernbert-embed-base"
|
@@ -98,7 +100,8 @@ if st.session_state.chunked and not st.session_state.vector_created:
|
|
98 |
vector_store = Chroma(
|
99 |
collection_name="deepseek_collection",
|
100 |
collection_metadata={"hnsw:space": "cosine"},
|
101 |
-
embedding_function=embedding_model
|
|
|
102 |
)
|
103 |
vector_store.add_documents(st.session_state.documents)
|
104 |
num_documents = len(vector_store.get()["documents"])
|
@@ -109,7 +112,8 @@ if st.session_state.chunked and not st.session_state.vector_created:
|
|
109 |
# Step 5: Query Input
|
110 |
if st.session_state.vector_created:
|
111 |
query = st.text_input("π Enter a Query:")
|
112 |
-
|
|
|
113 |
with st.spinner("Retrieving relevant contexts..."):
|
114 |
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
115 |
contexts = retriever.invoke(query)
|
@@ -119,41 +123,11 @@ if st.session_state.vector_created:
|
|
119 |
for i, text in enumerate(context_texts, 1):
|
120 |
st.write(f"**Context {i}:** {text[:500]}...")
|
121 |
|
122 |
-
# Step 6:
|
123 |
-
with st.spinner("Evaluating context relevancy..."):
|
124 |
-
context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt)
|
125 |
-
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
|
126 |
-
relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query})
|
127 |
-
|
128 |
-
st.subheader("π₯ Context Relevancy Evaluation")
|
129 |
-
st.json(relevancy_response['relevancy_response'])
|
130 |
-
|
131 |
-
# Step 7: Selecting Relevant Contexts
|
132 |
-
with st.spinner("Selecting the most relevant contexts..."):
|
133 |
-
relevant_prompt = PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt)
|
134 |
-
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
|
135 |
-
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']})
|
136 |
-
|
137 |
-
st.subheader("π¦ Pick Relevant Context Chain")
|
138 |
-
st.json(relevant_response['context_number'])
|
139 |
-
|
140 |
-
# Step 8: Retrieving Context for Response Generation
|
141 |
-
with st.spinner("Retrieving final context..."):
|
142 |
-
context_prompt = PromptTemplate(input_variables=["context_number", "context"], template=response_synth)
|
143 |
-
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
|
144 |
-
final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts})
|
145 |
-
|
146 |
-
st.subheader("π₯ Relevant Contexts Extracted")
|
147 |
-
st.json(final_contexts['relevant_contexts'])
|
148 |
-
|
149 |
-
# Step 9: Generate Final Response
|
150 |
with st.spinner("Generating the final answer..."):
|
151 |
final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
|
152 |
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
|
153 |
-
final_response = response_chain.invoke({"query": query, "context":
|
154 |
|
155 |
st.subheader("π₯ RAG Final Response")
|
156 |
st.success(final_response['final_response'])
|
157 |
-
|
158 |
-
else:
|
159 |
-
st.warning("π Please upload or provide a PDF URL first.")
|
|
|
26 |
|
27 |
st.title("Blah")
|
28 |
|
29 |
+
# **Initialize session state variables**
|
|
|
|
|
|
|
|
|
30 |
if "pdf_path" not in st.session_state:
|
31 |
st.session_state.pdf_path = None
|
32 |
if "pdf_loaded" not in st.session_state:
|
|
|
35 |
st.session_state.chunked = False
|
36 |
if "vector_created" not in st.session_state:
|
37 |
st.session_state.vector_created = False
|
38 |
+
if "vector_store_path" not in st.session_state:
|
39 |
+
st.session_state.vector_store_path = "./chroma_langchain_db"
|
40 |
+
if "vector_store" not in st.session_state:
|
41 |
+
st.session_state.vector_store = None
|
42 |
+
if "documents" not in st.session_state:
|
43 |
+
st.session_state.documents = None
|
44 |
|
45 |
+
# **Step 1: Choose PDF Source**
|
46 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
47 |
|
48 |
if pdf_source == "Upload a PDF file":
|
|
|
83 |
st.session_state.pdf_loaded = True
|
84 |
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
85 |
|
86 |
+
# Step 3: Chunking
|
87 |
if st.session_state.pdf_loaded and not st.session_state.chunked:
|
88 |
with st.spinner("Chunking the document..."):
|
89 |
model_name = "nomic-ai/modernbert-embed-base"
|
|
|
100 |
vector_store = Chroma(
|
101 |
collection_name="deepseek_collection",
|
102 |
collection_metadata={"hnsw:space": "cosine"},
|
103 |
+
embedding_function=embedding_model,
|
104 |
+
persist_directory=st.session_state.vector_store_path
|
105 |
)
|
106 |
vector_store.add_documents(st.session_state.documents)
|
107 |
num_documents = len(vector_store.get()["documents"])
|
|
|
112 |
# Step 5: Query Input
|
113 |
if st.session_state.vector_created:
|
114 |
query = st.text_input("π Enter a Query:")
|
115 |
+
|
116 |
+
if query and st.session_state.vector_store:
|
117 |
with st.spinner("Retrieving relevant contexts..."):
|
118 |
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
119 |
contexts = retriever.invoke(query)
|
|
|
123 |
for i, text in enumerate(context_texts, 1):
|
124 |
st.write(f"**Context {i}:** {text[:500]}...")
|
125 |
|
126 |
+
# **Step 6: Generate Final Response**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
with st.spinner("Generating the final answer..."):
|
128 |
final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
|
129 |
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
|
130 |
+
final_response = response_chain.invoke({"query": query, "context": context_texts})
|
131 |
|
132 |
st.subheader("π₯ RAG Final Response")
|
133 |
st.success(final_response['final_response'])
|
|
|
|
|
|