DrishtiSharma commited on
Commit
cdf4653
Β·
verified Β·
1 Parent(s): de30673

Create test.py

Browse files
Files changed (1) hide show
  1. test.py +141 -0
test.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import requests
4
+ import chromadb
5
+ from langchain.document_loaders import PDFPlumberLoader
6
+ from langchain_huggingface import HuggingFaceEmbeddings
7
+ from langchain_experimental.text_splitter import SemanticChunker
8
+ from langchain_chroma import Chroma
9
+ from langchain.chains import LLMChain, SequentialChain
10
+ from langchain.prompts import PromptTemplate
11
+ from langchain_groq import ChatGroq
12
+ from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
13
+
14
+ # ----------------- Streamlit UI Setup -----------------
15
+ st.set_page_config(page_title="Blah", layout="wide")
16
+ st.image("https://huggingface.co/front/assets/huggingface_logo-noborder.svg", width=150)
17
+ st.title("Blah-1")
18
+
19
+ # ----------------- API Keys -----------------
20
+ os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
21
+
22
+ # ----------------- Clear ChromaDB Cache -----------------
23
+ chromadb.api.client.SharedSystemClient.clear_system_cache()
24
+
25
+ # ----------------- Initialize Session State -----------------
26
+ if "pdf_loaded" not in st.session_state:
27
+ st.session_state.pdf_loaded = False
28
+ if "chunked" not in st.session_state:
29
+ st.session_state.chunked = False
30
+ if "vector_created" not in st.session_state:
31
+ st.session_state.vector_created = False
32
+ if "processed_chunks" not in st.session_state:
33
+ st.session_state.processed_chunks = None
34
+ if "vector_store" not in st.session_state:
35
+ st.session_state.vector_store = None
36
+
37
+ # ----------------- Load Models -----------------
38
+ llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
39
+ rag_llm = ChatGroq(model="mixtral-8x7b-32768")
40
+
41
+ # Enable verbose logging for debugging
42
+ llm_judge.verbose = True
43
+ rag_llm.verbose = True
44
+
45
+ # ----------------- PDF Selection (Upload or URL) -----------------
46
+ st.sidebar.subheader("πŸ“‚ PDF Selection")
47
+ pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
48
+
49
+ if pdf_source == "Upload a PDF file":
50
+ uploaded_file = st.sidebar.file_uploader("Upload your PDF file", type=["pdf"])
51
+ if uploaded_file:
52
+ st.session_state.pdf_path = "temp.pdf"
53
+ with open(st.session_state.pdf_path, "wb") as f:
54
+ f.write(uploaded_file.getbuffer())
55
+ st.session_state.pdf_loaded = False
56
+ st.session_state.chunked = False
57
+ st.session_state.vector_created = False
58
+
59
+ elif pdf_source == "Enter a PDF URL":
60
+ pdf_url = st.sidebar.text_input("Enter PDF URL:")
61
+ if pdf_url and not st.session_state.pdf_loaded:
62
+ with st.spinner("πŸ”„ Downloading PDF..."):
63
+ try:
64
+ response = requests.get(pdf_url)
65
+ if response.status_code == 200:
66
+ st.session_state.pdf_path = "temp.pdf"
67
+ with open(st.session_state.pdf_path, "wb") as f:
68
+ f.write(response.content)
69
+ st.session_state.pdf_loaded = False
70
+ st.session_state.chunked = False
71
+ st.session_state.vector_created = False
72
+ st.success("βœ… PDF Downloaded Successfully!")
73
+ else:
74
+ st.error("❌ Failed to download PDF. Check the URL.")
75
+ except Exception as e:
76
+ st.error(f"Error downloading PDF: {e}")
77
+
78
+ # ----------------- Process PDF -----------------
79
+ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
80
+ with st.spinner("πŸ”„ Processing document... Please wait."):
81
+ loader = PDFPlumberLoader(st.session_state.pdf_path)
82
+ docs = loader.load()
83
+
84
+ # Embedding Model (HF on CPU)
85
+ model_name = "nomic-ai/modernbert-embed-base"
86
+ embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"})
87
+
88
+ # Prevent unnecessary re-chunking
89
+ if not st.session_state.chunked:
90
+ text_splitter = SemanticChunker(embedding_model)
91
+ document_chunks = text_splitter.split_documents(docs)
92
+ st.session_state.processed_chunks = document_chunks
93
+ st.session_state.chunked = True
94
+
95
+ st.session_state.pdf_loaded = True
96
+ st.success("βœ… Document processed and chunked successfully!")
97
+
98
+ # ----------------- Setup Vector Store -----------------
99
+ if not st.session_state.vector_created and st.session_state.processed_chunks:
100
+ with st.spinner("πŸ”„ Initializing Vector Store..."):
101
+ st.session_state.vector_store = Chroma(
102
+ collection_name="deepseek_collection",
103
+ collection_metadata={"hnsw:space": "cosine"},
104
+ embedding_function=embedding_model
105
+ )
106
+ st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
107
+ st.session_state.vector_created = True
108
+ st.success("βœ… Vector store initialized successfully!")
109
+
110
+ # ----------------- Query Input -----------------
111
+ query = st.text_input("πŸ” Ask a question about the document:")
112
+
113
+ if query:
114
+ with st.spinner("πŸ”„ Retrieving relevant context..."):
115
+ retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
116
+ retrieved_docs = retriever.invoke(query)
117
+ context = [d.page_content for d in retrieved_docs]
118
+ st.success("βœ… Context retrieved successfully!")
119
+
120
+ # ----------------- Full SequentialChain Execution -----------------
121
+ with st.spinner("πŸ”„ Running full pipeline..."):
122
+ final_output = SequentialChain(
123
+ chains=[
124
+ LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response"),
125
+ LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number"),
126
+ LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts"),
127
+ LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
128
+ ],
129
+ input_variables=["context", "retriever_query", "query"],
130
+ output_variables=["relevancy_response", "context_number", "relevant_contexts", "final_response"]
131
+ ).invoke({"context": context, "retriever_query": query, "query": query})
132
+
133
+ # ----------------- Display All Outputs -----------------
134
+ st.subheader("πŸŸ₯ Context Relevancy Evaluation")
135
+ st.json(final_output["relevancy_response"])
136
+ st.subheader("🟦 Picked Relevant Contexts")
137
+ st.json(final_output["context_number"])
138
+ st.subheader("πŸŸ₯ Extracted Relevant Contexts")
139
+ st.json(final_output["relevant_contexts"])
140
+ st.subheader("πŸŸ₯ RAG Final Response")
141
+ st.write(final_output["final_response"])