|
import streamlit as st |
|
import os |
|
import json |
|
import requests |
|
import pdfplumber |
|
import chromadb |
|
import re |
|
from langchain.document_loaders import PDFPlumberLoader |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_experimental.text_splitter import SemanticChunker |
|
from langchain_chroma import Chroma |
|
from langchain.chains import LLMChain |
|
from langchain.prompts import PromptTemplate |
|
from langchain_groq import ChatGroq |
|
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth |
|
|
|
|
|
st.set_page_config(page_title="Blah-1", layout="centered") |
|
|
|
|
|
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") |
|
|
|
|
|
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b") |
|
rag_llm = ChatGroq(model="mixtral-8x7b-32768") |
|
|
|
llm_judge.verbose = True |
|
rag_llm.verbose = True |
|
|
|
|
|
chromadb.api.client.SharedSystemClient.clear_system_cache() |
|
|
|
|
|
|
|
CHROMA_DB_DIR = "/mnt/data/chroma_db" |
|
os.makedirs(CHROMA_DB_DIR, exist_ok=True) |
|
|
|
|
|
if "pdf_loaded" not in st.session_state: |
|
st.session_state.pdf_loaded = False |
|
if "chunked" not in st.session_state: |
|
st.session_state.chunked = False |
|
if "vector_created" not in st.session_state: |
|
st.session_state.vector_created = False |
|
if "processed_chunks" not in st.session_state: |
|
st.session_state.processed_chunks = None |
|
if "vector_store" not in st.session_state: |
|
st.session_state.vector_store = None |
|
|
|
|
|
|
|
def extract_metadata_llm(pdf_path): |
|
"""Extracts metadata using LLM instead of regex and logs progress in Streamlit UI.""" |
|
|
|
with pdfplumber.open(pdf_path) as pdf: |
|
first_page_text = pdf.pages[0].extract_text() or "No text found." if pdf.pages else "No text found." |
|
|
|
|
|
st.subheader("π Extracted First Page Text for Metadata") |
|
st.text_area("First Page Text:", first_page_text, height=200) |
|
|
|
|
|
metadata_prompt = PromptTemplate( |
|
input_variables=["text"], |
|
template=""" |
|
Given the following first page of a research paper, extract metadata **strictly in JSON format**. |
|
- If no data is found for a field, return `"Unknown"` instead. |
|
- Ensure the output is valid JSON (do not include markdown syntax). |
|
|
|
Example output: |
|
{ |
|
"Title": "Example Paper Title", |
|
"Author": "John Doe, Jane Smith", |
|
"Emails": "[email protected], [email protected]", |
|
"Affiliations": "School of AI, University of Example" |
|
} |
|
|
|
Now, extract the metadata from this document: |
|
{text} |
|
""" |
|
) |
|
|
|
|
|
metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata") |
|
|
|
|
|
st.subheader("π LLM Input for Metadata Extraction") |
|
st.json({"text": first_page_text}) |
|
|
|
try: |
|
metadata_response = metadata_chain.invoke({"text": first_page_text}) |
|
|
|
|
|
st.subheader("π Raw LLM Response") |
|
st.json(metadata_response) |
|
|
|
|
|
try: |
|
metadata_dict = json.loads(metadata_response["metadata"]) |
|
except json.JSONDecodeError: |
|
try: |
|
|
|
metadata_dict = json.loads(metadata_response["metadata"].strip("```json\n").strip("\n```")) |
|
except json.JSONDecodeError: |
|
metadata_dict = { |
|
"Title": "Unknown", |
|
"Author": "Unknown", |
|
"Emails": "No emails found", |
|
"Affiliations": "No affiliations found" |
|
} |
|
|
|
except Exception as e: |
|
st.error(f"β LLM Metadata Extraction Failed: {e}") |
|
metadata_dict = { |
|
"Title": "Unknown", |
|
"Author": "Unknown", |
|
"Emails": "No emails found", |
|
"Affiliations": "No affiliations found" |
|
} |
|
|
|
|
|
required_fields = ["Title", "Author", "Emails", "Affiliations"] |
|
for field in required_fields: |
|
metadata_dict.setdefault(field, "Unknown") |
|
|
|
|
|
st.subheader("β
Extracted Metadata") |
|
st.json(metadata_dict) |
|
|
|
return metadata_dict |
|
|
|
|
|
|
|
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True) |
|
|
|
if pdf_source == "Upload a PDF file": |
|
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"]) |
|
if uploaded_file: |
|
st.session_state.pdf_path = "/mnt/data/temp.pdf" |
|
with open(st.session_state.pdf_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
st.session_state.pdf_loaded = False |
|
st.session_state.chunked = False |
|
st.session_state.vector_created = False |
|
|
|
elif pdf_source == "Enter a PDF URL": |
|
pdf_url = st.text_input("Enter PDF URL:") |
|
if pdf_url and not st.session_state.pdf_loaded: |
|
with st.spinner("π Downloading PDF..."): |
|
try: |
|
response = requests.get(pdf_url) |
|
if response.status_code == 200: |
|
st.session_state.pdf_path = "/mnt/data/temp.pdf" |
|
with open(st.session_state.pdf_path, "wb") as f: |
|
f.write(response.content) |
|
st.session_state.pdf_loaded = False |
|
st.session_state.chunked = False |
|
st.session_state.vector_created = False |
|
st.success("β
PDF Downloaded Successfully!") |
|
else: |
|
st.error("β Failed to download PDF. Check the URL.") |
|
except Exception as e: |
|
st.error(f"Error downloading PDF: {e}") |
|
|
|
|
|
|
|
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state: |
|
with st.spinner("π Processing document... Please wait."): |
|
loader = PDFPlumberLoader(st.session_state.pdf_path) |
|
docs = loader.load() |
|
st.json(docs[0].metadata) |
|
|
|
|
|
metadata = extract_metadata_llm(st.session_state.pdf_path) |
|
|
|
|
|
if isinstance(metadata, dict): |
|
st.subheader("π Extracted Document Metadata") |
|
st.write(f"**Title:** {metadata.get('Title', 'Unknown')}") |
|
st.write(f"**Author:** {metadata.get('Author', 'Unknown')}") |
|
st.write(f"**Emails:** {metadata.get('Emails', 'No emails found')}") |
|
st.write(f"**Affiliations:** {metadata.get('Affiliations', 'No affiliations found')}") |
|
else: |
|
st.error("Metadata extraction failed. Check the LLM response format.") |
|
|
|
|
|
model_name = "nomic-ai/modernbert-embed-base" |
|
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}) |
|
|
|
|
|
metadata_doc = {"page_content": metadata, "metadata": {"source": "metadata"}} |
|
|
|
|
|
|
|
if not st.session_state.chunked: |
|
text_splitter = SemanticChunker(embedding_model) |
|
document_chunks = text_splitter.split_documents(docs) |
|
document_chunks.insert(0, metadata_doc) |
|
st.session_state.processed_chunks = document_chunks |
|
st.session_state.chunked = True |
|
|
|
st.session_state.pdf_loaded = True |
|
st.success("β
Document processed and chunked successfully!") |
|
|
|
|
|
if not st.session_state.vector_created and st.session_state.processed_chunks: |
|
with st.spinner("π Initializing Vector Store..."): |
|
st.session_state.vector_store = Chroma( |
|
persist_directory=CHROMA_DB_DIR, |
|
collection_name="deepseek_collection", |
|
collection_metadata={"hnsw:space": "cosine"}, |
|
embedding_function=embedding_model |
|
) |
|
st.session_state.vector_store.add_documents(st.session_state.processed_chunks) |
|
st.session_state.vector_created = True |
|
st.success("β
Vector store initialized successfully!") |
|
|
|
|
|
|
|
query = st.text_input("π Ask a question about the document:") |
|
|
|
if query: |
|
with st.spinner("π Retrieving relevant context..."): |
|
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |
|
retrieved_docs = retriever.invoke(query) |
|
context = [d.page_content for d in retrieved_docs] |
|
st.success("β
Context retrieved successfully!") |
|
|
|
|
|
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response") |
|
relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number") |
|
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts") |
|
response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response") |
|
|
|
response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query}) |
|
relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]}) |
|
contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context}) |
|
final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]}) |
|
|
|
|
|
st.markdown("### Context Relevancy Evaluation") |
|
st.json(response_crisis["relevancy_response"]) |
|
|
|
st.markdown("### Picked Relevant Contexts") |
|
st.json(relevant_response["context_number"]) |
|
|
|
st.markdown("### Extracted Relevant Contexts") |
|
st.json(contexts["relevant_contexts"]) |
|
|
|
st.subheader("context_relevancy_evaluation_chain Statement") |
|
st.json(final_response["relevancy_response"]) |
|
|
|
st.subheader("pick_relevant_context_chain Statement") |
|
st.json(final_response["context_number"]) |
|
|
|
st.subheader("relevant_contexts_chain Statement") |
|
st.json(final_response["relevant_contexts"]) |
|
|
|
st.subheader("RAG Response Statement") |
|
st.json(final_response["final_response"]) |
|
|