DrishtiSharma commited on
Commit
b9040c0
Β·
verified Β·
1 Parent(s): 373e851

Update lab/metadata_issue_debugging_statements.py

Browse files
lab/metadata_issue_debugging_statements.py CHANGED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import json
4
+ import requests
5
+ import pdfplumber
6
+ import chromadb
7
+ import re
8
+ from langchain.document_loaders import PDFPlumberLoader
9
+ from langchain_huggingface import HuggingFaceEmbeddings
10
+ from langchain_experimental.text_splitter import SemanticChunker
11
+ from langchain_chroma import Chroma
12
+ from langchain.chains import LLMChain
13
+ from langchain.prompts import PromptTemplate
14
+ from langchain_groq import ChatGroq
15
+ from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
16
+
17
+ # ----------------- Streamlit UI Setup -----------------
18
+ st.set_page_config(page_title="Blah-1", layout="centered")
19
+
20
+ # ----------------- API Keys -----------------
21
+ os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
22
+
23
+ # Load LLM models
24
+ llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
25
+ rag_llm = ChatGroq(model="mixtral-8x7b-32768")
26
+
27
+ llm_judge.verbose = True
28
+ rag_llm.verbose = True
29
+
30
+ # Clear ChromaDB cache to fix tenant issue
31
+ chromadb.api.client.SharedSystemClient.clear_system_cache()
32
+
33
+
34
+ # ----------------- ChromaDB Persistent Directory -----------------
35
+ CHROMA_DB_DIR = "/mnt/data/chroma_db"
36
+ os.makedirs(CHROMA_DB_DIR, exist_ok=True)
37
+
38
+ # ----------------- Initialize Session State -----------------
39
+ if "pdf_loaded" not in st.session_state:
40
+ st.session_state.pdf_loaded = False
41
+ if "chunked" not in st.session_state:
42
+ st.session_state.chunked = False
43
+ if "vector_created" not in st.session_state:
44
+ st.session_state.vector_created = False
45
+ if "processed_chunks" not in st.session_state:
46
+ st.session_state.processed_chunks = None
47
+ if "vector_store" not in st.session_state:
48
+ st.session_state.vector_store = None
49
+
50
+
51
+ # ----------------- Metadata Extraction -----------------
52
+ def extract_metadata_llm(pdf_path):
53
+ """Extracts metadata using LLM instead of regex and logs progress in Streamlit UI."""
54
+
55
+ with pdfplumber.open(pdf_path) as pdf:
56
+ first_page_text = pdf.pages[0].extract_text() or "No text found." if pdf.pages else "No text found."
57
+
58
+ # Streamlit Debugging: Show extracted text
59
+ st.subheader("πŸ“„ Extracted First Page Text for Metadata")
60
+ st.text_area("First Page Text:", first_page_text, height=200)
61
+
62
+ # Define metadata prompt
63
+ metadata_prompt = PromptTemplate(
64
+ input_variables=["text"],
65
+ template="""
66
+ Given the following first page of a research paper, extract metadata **strictly in JSON format**.
67
+ - If no data is found for a field, return `"Unknown"` instead.
68
+ - Ensure the output is valid JSON (do not include markdown syntax).
69
+
70
+ Example output:
71
+ {
72
+ "Title": "Example Paper Title",
73
+ "Author": "John Doe, Jane Smith",
74
75
+ "Affiliations": "School of AI, University of Example"
76
+ }
77
+
78
+ Now, extract the metadata from this document:
79
+ {text}
80
+ """
81
+ )
82
+
83
+ # Run LLM Metadata Extraction
84
+ metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
85
+
86
+ # Debugging: Log the LLM input
87
+ st.subheader("πŸ” LLM Input for Metadata Extraction")
88
+ st.json({"text": first_page_text})
89
+
90
+ try:
91
+ metadata_response = metadata_chain.invoke({"text": first_page_text})
92
+
93
+ # Debugging: Log raw LLM response
94
+ st.subheader("πŸ” Raw LLM Response")
95
+ st.json(metadata_response)
96
+
97
+ # Handle JSON extraction from LLM response
98
+ try:
99
+ metadata_dict = json.loads(metadata_response["metadata"])
100
+ except json.JSONDecodeError:
101
+ try:
102
+ # Attempt to clean up JSON if needed
103
+ metadata_dict = json.loads(metadata_response["metadata"].strip("```json\n").strip("\n```"))
104
+ except json.JSONDecodeError:
105
+ metadata_dict = {
106
+ "Title": "Unknown",
107
+ "Author": "Unknown",
108
+ "Emails": "No emails found",
109
+ "Affiliations": "No affiliations found"
110
+ }
111
+
112
+ except Exception as e:
113
+ st.error(f"❌ LLM Metadata Extraction Failed: {e}")
114
+ metadata_dict = {
115
+ "Title": "Unknown",
116
+ "Author": "Unknown",
117
+ "Emails": "No emails found",
118
+ "Affiliations": "No affiliations found"
119
+ }
120
+
121
+ # Ensure all required fields exist
122
+ required_fields = ["Title", "Author", "Emails", "Affiliations"]
123
+ for field in required_fields:
124
+ metadata_dict.setdefault(field, "Unknown")
125
+
126
+ # Streamlit Debugging: Display Final Extracted Metadata
127
+ st.subheader("βœ… Extracted Metadata")
128
+ st.json(metadata_dict)
129
+
130
+ return metadata_dict
131
+
132
+
133
+ # ----------------- Step 1: Choose PDF Source -----------------
134
+ pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
135
+
136
+ if pdf_source == "Upload a PDF file":
137
+ uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
138
+ if uploaded_file:
139
+ st.session_state.pdf_path = "/mnt/data/temp.pdf"
140
+ with open(st.session_state.pdf_path, "wb") as f:
141
+ f.write(uploaded_file.getbuffer())
142
+ st.session_state.pdf_loaded = False
143
+ st.session_state.chunked = False
144
+ st.session_state.vector_created = False
145
+
146
+ elif pdf_source == "Enter a PDF URL":
147
+ pdf_url = st.text_input("Enter PDF URL:")
148
+ if pdf_url and not st.session_state.pdf_loaded:
149
+ with st.spinner("πŸ”„ Downloading PDF..."):
150
+ try:
151
+ response = requests.get(pdf_url)
152
+ if response.status_code == 200:
153
+ st.session_state.pdf_path = "/mnt/data/temp.pdf"
154
+ with open(st.session_state.pdf_path, "wb") as f:
155
+ f.write(response.content)
156
+ st.session_state.pdf_loaded = False
157
+ st.session_state.chunked = False
158
+ st.session_state.vector_created = False
159
+ st.success("βœ… PDF Downloaded Successfully!")
160
+ else:
161
+ st.error("❌ Failed to download PDF. Check the URL.")
162
+ except Exception as e:
163
+ st.error(f"Error downloading PDF: {e}")
164
+
165
+
166
+ # ----------------- Process PDF -----------------
167
+ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
168
+ with st.spinner("πŸ”„ Processing document... Please wait."):
169
+ loader = PDFPlumberLoader(st.session_state.pdf_path)
170
+ docs = loader.load()
171
+ st.json(docs[0].metadata)
172
+
173
+ # Extract metadata
174
+ metadata = extract_metadata_llm(st.session_state.pdf_path)
175
+
176
+ # Display extracted-metadata
177
+ if isinstance(metadata, dict):
178
+ st.subheader("πŸ“„ Extracted Document Metadata")
179
+ st.write(f"**Title:** {metadata.get('Title', 'Unknown')}")
180
+ st.write(f"**Author:** {metadata.get('Author', 'Unknown')}")
181
+ st.write(f"**Emails:** {metadata.get('Emails', 'No emails found')}")
182
+ st.write(f"**Affiliations:** {metadata.get('Affiliations', 'No affiliations found')}")
183
+ else:
184
+ st.error("Metadata extraction failed. Check the LLM response format.")
185
+
186
+ # Embedding Model
187
+ model_name = "nomic-ai/modernbert-embed-base"
188
+ embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
189
+
190
+ # Convert metadata into a retrievable chunk
191
+ metadata_doc = {"page_content": metadata, "metadata": {"source": "metadata"}}
192
+
193
+
194
+ # Prevent unnecessary re-chunking
195
+ if not st.session_state.chunked:
196
+ text_splitter = SemanticChunker(embedding_model)
197
+ document_chunks = text_splitter.split_documents(docs)
198
+ document_chunks.insert(0, metadata_doc) # Insert metadata as a retrievable document
199
+ st.session_state.processed_chunks = document_chunks
200
+ st.session_state.chunked = True
201
+
202
+ st.session_state.pdf_loaded = True
203
+ st.success("βœ… Document processed and chunked successfully!")
204
+
205
+ # ----------------- Setup Vector Store -----------------
206
+ if not st.session_state.vector_created and st.session_state.processed_chunks:
207
+ with st.spinner("πŸ”„ Initializing Vector Store..."):
208
+ st.session_state.vector_store = Chroma(
209
+ persist_directory=CHROMA_DB_DIR, # <-- Ensures persistence
210
+ collection_name="deepseek_collection",
211
+ collection_metadata={"hnsw:space": "cosine"},
212
+ embedding_function=embedding_model
213
+ )
214
+ st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
215
+ st.session_state.vector_created = True
216
+ st.success("βœ… Vector store initialized successfully!")
217
+
218
+
219
+ # ----------------- Query Input -----------------
220
+ query = st.text_input("πŸ” Ask a question about the document:")
221
+
222
+ if query:
223
+ with st.spinner("πŸ”„ Retrieving relevant context..."):
224
+ retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
225
+ retrieved_docs = retriever.invoke(query)
226
+ context = [d.page_content for d in retrieved_docs]
227
+ st.success("βœ… Context retrieved successfully!")
228
+
229
+ # ----------------- Run Individual Chains Explicitly -----------------
230
+ context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
231
+ relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
232
+ relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
233
+ response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
234
+
235
+ response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
236
+ relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
237
+ contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
238
+ final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})
239
+
240
+ # ----------------- Display All Outputs -----------------
241
+ st.markdown("### Context Relevancy Evaluation")
242
+ st.json(response_crisis["relevancy_response"])
243
+
244
+ st.markdown("### Picked Relevant Contexts")
245
+ st.json(relevant_response["context_number"])
246
+
247
+ st.markdown("### Extracted Relevant Contexts")
248
+ st.json(contexts["relevant_contexts"])
249
+
250
+ st.subheader("context_relevancy_evaluation_chain Statement")
251
+ st.json(final_response["relevancy_response"])
252
+
253
+ st.subheader("pick_relevant_context_chain Statement")
254
+ st.json(final_response["context_number"])
255
+
256
+ st.subheader("relevant_contexts_chain Statement")
257
+ st.json(final_response["relevant_contexts"])
258
+
259
+ st.subheader("RAG Response Statement")
260
+ st.json(final_response["final_response"])