Update lab/metadata_issue_debugging_statements.py
Browse files
lab/metadata_issue_debugging_statements.py
CHANGED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import requests
|
5 |
+
import pdfplumber
|
6 |
+
import chromadb
|
7 |
+
import re
|
8 |
+
from langchain.document_loaders import PDFPlumberLoader
|
9 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
10 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
11 |
+
from langchain_chroma import Chroma
|
12 |
+
from langchain.chains import LLMChain
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from langchain_groq import ChatGroq
|
15 |
+
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
16 |
+
|
17 |
+
# ----------------- Streamlit UI Setup -----------------
|
18 |
+
st.set_page_config(page_title="Blah-1", layout="centered")
|
19 |
+
|
20 |
+
# ----------------- API Keys -----------------
|
21 |
+
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
22 |
+
|
23 |
+
# Load LLM models
|
24 |
+
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
|
25 |
+
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
|
26 |
+
|
27 |
+
llm_judge.verbose = True
|
28 |
+
rag_llm.verbose = True
|
29 |
+
|
30 |
+
# Clear ChromaDB cache to fix tenant issue
|
31 |
+
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
32 |
+
|
33 |
+
|
34 |
+
# ----------------- ChromaDB Persistent Directory -----------------
|
35 |
+
CHROMA_DB_DIR = "/mnt/data/chroma_db"
|
36 |
+
os.makedirs(CHROMA_DB_DIR, exist_ok=True)
|
37 |
+
|
38 |
+
# ----------------- Initialize Session State -----------------
|
39 |
+
if "pdf_loaded" not in st.session_state:
|
40 |
+
st.session_state.pdf_loaded = False
|
41 |
+
if "chunked" not in st.session_state:
|
42 |
+
st.session_state.chunked = False
|
43 |
+
if "vector_created" not in st.session_state:
|
44 |
+
st.session_state.vector_created = False
|
45 |
+
if "processed_chunks" not in st.session_state:
|
46 |
+
st.session_state.processed_chunks = None
|
47 |
+
if "vector_store" not in st.session_state:
|
48 |
+
st.session_state.vector_store = None
|
49 |
+
|
50 |
+
|
51 |
+
# ----------------- Metadata Extraction -----------------
|
52 |
+
def extract_metadata_llm(pdf_path):
|
53 |
+
"""Extracts metadata using LLM instead of regex and logs progress in Streamlit UI."""
|
54 |
+
|
55 |
+
with pdfplumber.open(pdf_path) as pdf:
|
56 |
+
first_page_text = pdf.pages[0].extract_text() or "No text found." if pdf.pages else "No text found."
|
57 |
+
|
58 |
+
# Streamlit Debugging: Show extracted text
|
59 |
+
st.subheader("π Extracted First Page Text for Metadata")
|
60 |
+
st.text_area("First Page Text:", first_page_text, height=200)
|
61 |
+
|
62 |
+
# Define metadata prompt
|
63 |
+
metadata_prompt = PromptTemplate(
|
64 |
+
input_variables=["text"],
|
65 |
+
template="""
|
66 |
+
Given the following first page of a research paper, extract metadata **strictly in JSON format**.
|
67 |
+
- If no data is found for a field, return `"Unknown"` instead.
|
68 |
+
- Ensure the output is valid JSON (do not include markdown syntax).
|
69 |
+
|
70 |
+
Example output:
|
71 |
+
{
|
72 |
+
"Title": "Example Paper Title",
|
73 |
+
"Author": "John Doe, Jane Smith",
|
74 |
+
"Emails": "[email protected], [email protected]",
|
75 |
+
"Affiliations": "School of AI, University of Example"
|
76 |
+
}
|
77 |
+
|
78 |
+
Now, extract the metadata from this document:
|
79 |
+
{text}
|
80 |
+
"""
|
81 |
+
)
|
82 |
+
|
83 |
+
# Run LLM Metadata Extraction
|
84 |
+
metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
|
85 |
+
|
86 |
+
# Debugging: Log the LLM input
|
87 |
+
st.subheader("π LLM Input for Metadata Extraction")
|
88 |
+
st.json({"text": first_page_text})
|
89 |
+
|
90 |
+
try:
|
91 |
+
metadata_response = metadata_chain.invoke({"text": first_page_text})
|
92 |
+
|
93 |
+
# Debugging: Log raw LLM response
|
94 |
+
st.subheader("π Raw LLM Response")
|
95 |
+
st.json(metadata_response)
|
96 |
+
|
97 |
+
# Handle JSON extraction from LLM response
|
98 |
+
try:
|
99 |
+
metadata_dict = json.loads(metadata_response["metadata"])
|
100 |
+
except json.JSONDecodeError:
|
101 |
+
try:
|
102 |
+
# Attempt to clean up JSON if needed
|
103 |
+
metadata_dict = json.loads(metadata_response["metadata"].strip("```json\n").strip("\n```"))
|
104 |
+
except json.JSONDecodeError:
|
105 |
+
metadata_dict = {
|
106 |
+
"Title": "Unknown",
|
107 |
+
"Author": "Unknown",
|
108 |
+
"Emails": "No emails found",
|
109 |
+
"Affiliations": "No affiliations found"
|
110 |
+
}
|
111 |
+
|
112 |
+
except Exception as e:
|
113 |
+
st.error(f"β LLM Metadata Extraction Failed: {e}")
|
114 |
+
metadata_dict = {
|
115 |
+
"Title": "Unknown",
|
116 |
+
"Author": "Unknown",
|
117 |
+
"Emails": "No emails found",
|
118 |
+
"Affiliations": "No affiliations found"
|
119 |
+
}
|
120 |
+
|
121 |
+
# Ensure all required fields exist
|
122 |
+
required_fields = ["Title", "Author", "Emails", "Affiliations"]
|
123 |
+
for field in required_fields:
|
124 |
+
metadata_dict.setdefault(field, "Unknown")
|
125 |
+
|
126 |
+
# Streamlit Debugging: Display Final Extracted Metadata
|
127 |
+
st.subheader("β
Extracted Metadata")
|
128 |
+
st.json(metadata_dict)
|
129 |
+
|
130 |
+
return metadata_dict
|
131 |
+
|
132 |
+
|
133 |
+
# ----------------- Step 1: Choose PDF Source -----------------
|
134 |
+
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
135 |
+
|
136 |
+
if pdf_source == "Upload a PDF file":
|
137 |
+
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
|
138 |
+
if uploaded_file:
|
139 |
+
st.session_state.pdf_path = "/mnt/data/temp.pdf"
|
140 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
141 |
+
f.write(uploaded_file.getbuffer())
|
142 |
+
st.session_state.pdf_loaded = False
|
143 |
+
st.session_state.chunked = False
|
144 |
+
st.session_state.vector_created = False
|
145 |
+
|
146 |
+
elif pdf_source == "Enter a PDF URL":
|
147 |
+
pdf_url = st.text_input("Enter PDF URL:")
|
148 |
+
if pdf_url and not st.session_state.pdf_loaded:
|
149 |
+
with st.spinner("π Downloading PDF..."):
|
150 |
+
try:
|
151 |
+
response = requests.get(pdf_url)
|
152 |
+
if response.status_code == 200:
|
153 |
+
st.session_state.pdf_path = "/mnt/data/temp.pdf"
|
154 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
155 |
+
f.write(response.content)
|
156 |
+
st.session_state.pdf_loaded = False
|
157 |
+
st.session_state.chunked = False
|
158 |
+
st.session_state.vector_created = False
|
159 |
+
st.success("β
PDF Downloaded Successfully!")
|
160 |
+
else:
|
161 |
+
st.error("β Failed to download PDF. Check the URL.")
|
162 |
+
except Exception as e:
|
163 |
+
st.error(f"Error downloading PDF: {e}")
|
164 |
+
|
165 |
+
|
166 |
+
# ----------------- Process PDF -----------------
|
167 |
+
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
168 |
+
with st.spinner("π Processing document... Please wait."):
|
169 |
+
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
170 |
+
docs = loader.load()
|
171 |
+
st.json(docs[0].metadata)
|
172 |
+
|
173 |
+
# Extract metadata
|
174 |
+
metadata = extract_metadata_llm(st.session_state.pdf_path)
|
175 |
+
|
176 |
+
# Display extracted-metadata
|
177 |
+
if isinstance(metadata, dict):
|
178 |
+
st.subheader("π Extracted Document Metadata")
|
179 |
+
st.write(f"**Title:** {metadata.get('Title', 'Unknown')}")
|
180 |
+
st.write(f"**Author:** {metadata.get('Author', 'Unknown')}")
|
181 |
+
st.write(f"**Emails:** {metadata.get('Emails', 'No emails found')}")
|
182 |
+
st.write(f"**Affiliations:** {metadata.get('Affiliations', 'No affiliations found')}")
|
183 |
+
else:
|
184 |
+
st.error("Metadata extraction failed. Check the LLM response format.")
|
185 |
+
|
186 |
+
# Embedding Model
|
187 |
+
model_name = "nomic-ai/modernbert-embed-base"
|
188 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
189 |
+
|
190 |
+
# Convert metadata into a retrievable chunk
|
191 |
+
metadata_doc = {"page_content": metadata, "metadata": {"source": "metadata"}}
|
192 |
+
|
193 |
+
|
194 |
+
# Prevent unnecessary re-chunking
|
195 |
+
if not st.session_state.chunked:
|
196 |
+
text_splitter = SemanticChunker(embedding_model)
|
197 |
+
document_chunks = text_splitter.split_documents(docs)
|
198 |
+
document_chunks.insert(0, metadata_doc) # Insert metadata as a retrievable document
|
199 |
+
st.session_state.processed_chunks = document_chunks
|
200 |
+
st.session_state.chunked = True
|
201 |
+
|
202 |
+
st.session_state.pdf_loaded = True
|
203 |
+
st.success("β
Document processed and chunked successfully!")
|
204 |
+
|
205 |
+
# ----------------- Setup Vector Store -----------------
|
206 |
+
if not st.session_state.vector_created and st.session_state.processed_chunks:
|
207 |
+
with st.spinner("π Initializing Vector Store..."):
|
208 |
+
st.session_state.vector_store = Chroma(
|
209 |
+
persist_directory=CHROMA_DB_DIR, # <-- Ensures persistence
|
210 |
+
collection_name="deepseek_collection",
|
211 |
+
collection_metadata={"hnsw:space": "cosine"},
|
212 |
+
embedding_function=embedding_model
|
213 |
+
)
|
214 |
+
st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
|
215 |
+
st.session_state.vector_created = True
|
216 |
+
st.success("β
Vector store initialized successfully!")
|
217 |
+
|
218 |
+
|
219 |
+
# ----------------- Query Input -----------------
|
220 |
+
query = st.text_input("π Ask a question about the document:")
|
221 |
+
|
222 |
+
if query:
|
223 |
+
with st.spinner("π Retrieving relevant context..."):
|
224 |
+
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
225 |
+
retrieved_docs = retriever.invoke(query)
|
226 |
+
context = [d.page_content for d in retrieved_docs]
|
227 |
+
st.success("β
Context retrieved successfully!")
|
228 |
+
|
229 |
+
# ----------------- Run Individual Chains Explicitly -----------------
|
230 |
+
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
|
231 |
+
relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
|
232 |
+
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
|
233 |
+
response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
|
234 |
+
|
235 |
+
response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
|
236 |
+
relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
|
237 |
+
contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
|
238 |
+
final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})
|
239 |
+
|
240 |
+
# ----------------- Display All Outputs -----------------
|
241 |
+
st.markdown("### Context Relevancy Evaluation")
|
242 |
+
st.json(response_crisis["relevancy_response"])
|
243 |
+
|
244 |
+
st.markdown("### Picked Relevant Contexts")
|
245 |
+
st.json(relevant_response["context_number"])
|
246 |
+
|
247 |
+
st.markdown("### Extracted Relevant Contexts")
|
248 |
+
st.json(contexts["relevant_contexts"])
|
249 |
+
|
250 |
+
st.subheader("context_relevancy_evaluation_chain Statement")
|
251 |
+
st.json(final_response["relevancy_response"])
|
252 |
+
|
253 |
+
st.subheader("pick_relevant_context_chain Statement")
|
254 |
+
st.json(final_response["context_number"])
|
255 |
+
|
256 |
+
st.subheader("relevant_contexts_chain Statement")
|
257 |
+
st.json(final_response["relevant_contexts"])
|
258 |
+
|
259 |
+
st.subheader("RAG Response Statement")
|
260 |
+
st.json(final_response["final_response"])
|