|
import streamlit as st |
|
import os |
|
import requests |
|
import pdfplumber |
|
import chromadb |
|
import re |
|
from langchain.document_loaders import PDFPlumberLoader |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_experimental.text_splitter import SemanticChunker |
|
from langchain_chroma import Chroma |
|
from langchain.chains import LLMChain |
|
from langchain.prompts import PromptTemplate |
|
from langchain_groq import ChatGroq |
|
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth |
|
|
|
|
|
st.set_page_config(page_title="Blah", layout="centered") |
|
st.title("Blah-1") |
|
|
|
|
|
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") |
|
|
|
|
|
CHROMA_DB_DIR = "/mnt/data/chroma_db" |
|
os.makedirs(CHROMA_DB_DIR, exist_ok=True) |
|
|
|
|
|
if "pdf_loaded" not in st.session_state: |
|
st.session_state.pdf_loaded = False |
|
if "chunked" not in st.session_state: |
|
st.session_state.chunked = False |
|
if "vector_created" not in st.session_state: |
|
st.session_state.vector_created = False |
|
if "processed_chunks" not in st.session_state: |
|
st.session_state.processed_chunks = None |
|
if "vector_store" not in st.session_state: |
|
st.session_state.vector_store = None |
|
|
|
|
|
def extract_metadata(pdf_path): |
|
"""Extracts title, author, emails, and affiliations from PDF.""" |
|
with pdfplumber.open(pdf_path) as pdf: |
|
metadata = pdf.metadata or {} |
|
|
|
|
|
title = metadata.get("Title", "").strip() |
|
if not title and pdf.pages: |
|
text = pdf.pages[0].extract_text() |
|
title_match = re.search(r"(?i)title[:\-]?\s*(.*)", text or "") |
|
title = title_match.group(1) if title_match else text.split("\n")[0] if text else "Untitled Document" |
|
|
|
|
|
author = metadata.get("Author", "").strip() |
|
if not author and pdf.pages: |
|
author_match = re.search(r"(?i)by\s+([A-Za-z\s,]+)", pdf.pages[0].extract_text() or "") |
|
author = author_match.group(1).strip() if author_match else "Unknown Author" |
|
|
|
|
|
emails = re.findall(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", pdf.pages[0].extract_text() or "") |
|
email_str = ", ".join(emails) if emails else "No emails found" |
|
|
|
|
|
affiliations = re.findall(r"(?:Department|Faculty|Institute|University|College|School)\s+[\w\s]+", pdf.pages[0].extract_text() or "") |
|
affiliation_str = ", ".join(affiliations) if affiliations else "No affiliations found" |
|
|
|
return title, author, email_str, affiliation_str |
|
|
|
|
|
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True) |
|
|
|
if pdf_source == "Upload a PDF file": |
|
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"]) |
|
if uploaded_file: |
|
st.session_state.pdf_path = "/mnt/data/temp.pdf" |
|
with open(st.session_state.pdf_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
st.session_state.pdf_loaded = False |
|
st.session_state.chunked = False |
|
st.session_state.vector_created = False |
|
|
|
|
|
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state: |
|
with st.spinner("π Processing document... Please wait."): |
|
loader = PDFPlumberLoader(st.session_state.pdf_path) |
|
docs = loader.load() |
|
st.json(docs[0].metadata) |
|
|
|
|
|
title, author, email_str, affiliation_str = extract_metadata(st.session_state.pdf_path) |
|
|
|
|
|
st.subheader("π Extracted Document Metadata") |
|
st.write(f"**Title:** {title}") |
|
st.write(f"**Author:** {author}") |
|
st.write(f"**Emails:** {email_str}") |
|
st.write(f"**Affiliations:** {affiliation_str}") |
|
|
|
|
|
model_name = "nomic-ai/modernbert-embed-base" |
|
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}) |
|
|
|
|
|
metadata_text = f"Title: {title}\nAuthor: {author}\nEmails: {email_str}\nAffiliations: {affiliation_str}" |
|
metadata_doc = {"page_content": metadata_text, "metadata": {"source": "metadata"}} |
|
|
|
|
|
if not st.session_state.chunked: |
|
text_splitter = SemanticChunker(embedding_model) |
|
document_chunks = text_splitter.split_documents(docs) |
|
document_chunks.insert(0, metadata_doc) |
|
st.session_state.processed_chunks = document_chunks |
|
st.session_state.chunked = True |
|
|
|
st.session_state.pdf_loaded = True |
|
st.success("β
Document processed and chunked successfully!") |
|
|
|
|
|
if not st.session_state.vector_created and st.session_state.processed_chunks: |
|
with st.spinner("π Initializing Vector Store..."): |
|
st.session_state.vector_store = Chroma( |
|
persist_directory=CHROMA_DB_DIR, |
|
collection_name="deepseek_collection", |
|
collection_metadata={"hnsw:space": "cosine"}, |
|
embedding_function=embedding_model |
|
) |
|
st.session_state.vector_store.add_documents(st.session_state.processed_chunks) |
|
st.session_state.vector_created = True |
|
st.success("β
Vector store initialized successfully!") |
|
|
|
|
|
|
|
query = st.text_input("π Ask a question about the document:") |
|
|
|
if query: |
|
with st.spinner("π Retrieving relevant context..."): |
|
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |
|
retrieved_docs = retriever.invoke(query) |
|
context = [d.page_content for d in retrieved_docs] |
|
st.success("β
Context retrieved successfully!") |
|
|
|
|
|
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response") |
|
relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number") |
|
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts") |
|
response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response") |
|
|
|
response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query}) |
|
relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]}) |
|
contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context}) |
|
final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]}) |
|
|
|
|
|
st.markdown("### Context Relevancy Evaluation") |
|
st.json(response_crisis["relevancy_response"]) |
|
|
|
st.markdown("### Picked Relevant Contexts") |
|
st.json(relevant_response["context_number"]) |
|
|
|
st.markdown("### Extracted Relevant Contexts") |
|
st.json(contexts["relevant_contexts"]) |
|
|
|
st.markdown("### RAG Final Response") |
|
st.write(final_response["final_response"]) |
|
|
|
st.subheader("context_relevancy_evaluation_chain Statement") |
|
st.json(final_response["relevancy_response"]) |
|
|
|
st.subheader("pick_relevant_context_chain Statement") |
|
st.json(final_response["context_number"]) |
|
|
|
st.subheader("relevant_contexts_chain Statement") |
|
st.json(final_response["relevant_contexts"]) |
|
|
|
st.subheader("RAG Response Statement") |
|
st.json(final_response["final_response"]) |
|
|