DominusDeorum commited on
Commit
39c56d2
·
verified ·
1 Parent(s): 3390999

Trying to use model output

Browse files
Files changed (1) hide show
  1. app.py +42 -32
app.py CHANGED
@@ -1,48 +1,59 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("DominusDeorum/llama-3.2-lora_model")
 
 
 
 
 
 
8
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
 
 
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
-
 
26
  messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
  messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
 
 
 
 
 
39
  response += token
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
@@ -59,6 +70,5 @@ demo = gr.ChatInterface(
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from unsloth import FastLanguageModel
3
+ from transformers import TextStreamer
4
+ import torch
5
 
6
+ # Initialize the model and tokenizer
7
+ def initialize_model(model_name, max_seq_length, dtype, load_in_4bit):
8
+ model, tokenizer = FastLanguageModel.from_pretrained(
9
+ model_name=model_name, # Your Lora model name
10
+ max_seq_length=max_seq_length,
11
+ dtype=dtype,
12
+ load_in_4bit=load_in_4bit,
13
+ )
14
+ FastLanguageModel.for_inference(model) # Enable 2x faster inference
15
+ return model, tokenizer
16
 
17
+ # Load model and tokenizer
18
+ model_name = "DominusDeorum/llama-3.2-lora_model" # Replace with your model
19
+ max_seq_length = 2048 # Adjust as needed
20
+ dtype = torch.float16 # Set dtype (can also use torch.bfloat16, etc.)
21
+ load_in_4bit = True # Set to True if using 4-bit inference
22
 
23
+ model, tokenizer = initialize_model(model_name, max_seq_length, dtype, load_in_4bit)
 
 
 
 
 
 
 
 
24
 
25
+ def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
26
+ # Prepare the chat history and system message
27
+ messages = [{"role": "system", "content": system_message}]
28
+
29
  for val in history:
30
  if val[0]:
31
  messages.append({"role": "user", "content": val[0]})
32
  if val[1]:
33
  messages.append({"role": "assistant", "content": val[1]})
34
+
35
+ # Add the user's new message
36
  messages.append({"role": "user", "content": message})
37
+
38
+ # Prepare inputs for the model
39
+ inputs = tokenizer.apply_chat_template(
 
40
  messages,
41
+ tokenize=True,
42
+ add_generation_prompt=True,
43
+ return_tensors="pt",
44
+ ).to("cuda")
45
+
46
+ # Generate response with streaming
47
+ text_streamer = TextStreamer(tokenizer, skip_prompt=True)
48
+ response = ""
49
+
50
+ for output in model.generate(input_ids=inputs, streamer=text_streamer, max_new_tokens=max_tokens,
51
+ use_cache=True, temperature=temperature, top_p=top_p):
52
+ token = tokenizer.decode(output, skip_special_tokens=True)
53
  response += token
54
  yield response
55
 
56
+ # Set up Gradio interface
 
 
 
57
  demo = gr.ChatInterface(
58
  respond,
59
  additional_inputs=[
 
70
  ],
71
  )
72
 
 
73
  if __name__ == "__main__":
74
+ demo.launch()