Spaces:
Runtime error
Runtime error
Using custom model
Browse files
app.py
CHANGED
@@ -1,52 +1,48 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
# Load your fine-tuned model and tokenizer
|
6 |
-
model_name = "DominusDeorum/llama-3.2-lora_model" # Replace with your model name
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
10 |
-
# The main function that handles the chatbot response
|
11 |
def respond(
|
12 |
-
message
|
13 |
-
history:
|
14 |
-
system_message
|
15 |
-
max_tokens
|
16 |
-
temperature
|
17 |
-
top_p
|
18 |
):
|
19 |
-
# Start with the system message
|
20 |
messages = [{"role": "system", "content": system_message}]
|
21 |
|
22 |
-
# Add the user-assistant history to the messages
|
23 |
for val in history:
|
24 |
if val[0]:
|
25 |
messages.append({"role": "user", "content": val[0]})
|
26 |
if val[1]:
|
27 |
messages.append({"role": "assistant", "content": val[1]})
|
28 |
|
29 |
-
# Add the new user message
|
30 |
messages.append({"role": "user", "content": message})
|
31 |
|
32 |
-
|
33 |
-
inputs = tokenizer(" ".join([msg['content'] for msg in messages]), return_tensors="pt")
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
temperature=temperature,
|
40 |
-
top_p=top_p
|
41 |
-
)
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
# Yield the final response to the user
|
47 |
-
return response
|
48 |
|
49 |
-
|
|
|
|
|
50 |
demo = gr.ChatInterface(
|
51 |
respond,
|
52 |
additional_inputs=[
|
@@ -63,6 +59,6 @@ demo = gr.ChatInterface(
|
|
63 |
],
|
64 |
)
|
65 |
|
66 |
-
|
67 |
if __name__ == "__main__":
|
68 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
client = InferenceClient("DominusDeorum/llama-3.2-lora_model")
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
def respond(
|
11 |
+
message,
|
12 |
+
history: list[tuple[str, str]],
|
13 |
+
system_message,
|
14 |
+
max_tokens,
|
15 |
+
temperature,
|
16 |
+
top_p,
|
17 |
):
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
|
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
+
response = ""
|
|
|
29 |
|
30 |
+
for message in client.chat_completion(
|
31 |
+
messages,
|
32 |
+
max_tokens=max_tokens,
|
33 |
+
stream=True,
|
34 |
+
temperature=temperature,
|
35 |
+
top_p=top_p,
|
36 |
+
):
|
37 |
+
token = message.choices[0].delta.content
|
38 |
|
39 |
+
response += token
|
40 |
+
yield response
|
41 |
|
|
|
|
|
42 |
|
43 |
+
"""
|
44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
|
|
59 |
],
|
60 |
)
|
61 |
|
62 |
+
|
63 |
if __name__ == "__main__":
|
64 |
+
demo.launch()
|