File size: 2,384 Bytes
dd63695 7bb2b23 dd63695 94eee9a dd63695 94eee9a ca937ec dd63695 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import os
import gradio as gr
import requests
import json
from urllib.parse import quote
auth_token = os.environ.get("kinit_mgt_access_token")
share = os.environ.get("GRADIO_SHARE")
def get_api_response(text):
url = "https://mgt-detector.model.kinit.sk/prod/?q=" + quote(text)
payload = {}
headers = {
'x-api-key': auth_token
}
response = requests.request("GET", url, headers=headers, data=payload)
response = json.loads(response.text)
return response
def predict(text):
#return 'machine', 1.0
res = get_api_response(text)
if 'pred' not in res.keys():
return "Waiting for the server startup (up to 1 min for the first request), try again!", "Waiting for the server startup (up to 1 min for the first request), try again!"
pred = "Very likely human-written"
if res['score'] > 0.05: pred = "Likely human-written"
if res['score'] > 0.5: pred = "Likely machine-generated"
if res['score'] > 0.95: pred = "Very likely machine-generated"
return pred,res['score']
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown("""
## DEMO: KInIT Multilingual Machine-Generated Text Detector
Trained on [MULTITuDE](https://aclanthology.org/2023.emnlp-main.616/) (news articles) and [MultiSocial](https://arxiv.org/abs/2406.12549) (social media texts) texts in 22 languages.
""")
gr.Markdown("""
**Disclaimer: This is a DEMO for showcase, not the final tool. The detector is based on AI transformer model and is NOT 100% accurate! Usage is intended for research purpose only, as an indicator. Do not use it for direct decision making!**""")
gr.Markdown("""To generate exemplar text by a large language model, you can use [HuggingFace Chat](https://huggingface.co/chat/).""")
t1 = gr.Textbox(lines=10, label='Text',value="Put your text (in any language) in here to try out our multilingual machine-generated text detector.")
button1 = gr.Button("Run detection")
label1 = gr.Textbox(lines=1, label='Result')
score1 = gr.Textbox(lines=1, label='Probability (closer to 0 means higher probability of text being written by a human, closer to 1 means higher probability of text being generated by an AI model)')
button1.click(predict, inputs=[t1], outputs=[label1,score1], api_name=False)
if __name__ == "__main__":
demo.launch(show_api=False, share=share) |