Upload 3 files
Browse files- README.md +3 -3
- app.py +47 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: KInIT Multilingual Machine-Generated Text Detector
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: KInIT Multilingual Machine-Generated Text Detector
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
from urllib.parse import quote
|
6 |
+
|
7 |
+
auth_token = os.environ.get("kinit_mgt_access_token")
|
8 |
+
share = os.environ.get("GRADIO_SHARE")
|
9 |
+
|
10 |
+
def get_api_response(text):
|
11 |
+
url = "https://mgt-detector.model.kinit.sk/prod/?q=" + quote(text)
|
12 |
+
payload = {}
|
13 |
+
headers = {
|
14 |
+
'x-api-key': auth_token
|
15 |
+
}
|
16 |
+
response = requests.request("GET", url, headers=headers, data=payload)
|
17 |
+
response = json.loads(response.text)
|
18 |
+
return response
|
19 |
+
|
20 |
+
def predict(text):
|
21 |
+
#return 'machine', 1.0
|
22 |
+
res = get_api_response(text)
|
23 |
+
if 'pred' not in res.keys():
|
24 |
+
return "Waiting for the server startup, try again!", "Waiting for the server startup, try again!"
|
25 |
+
pred = "Very likely human-written"
|
26 |
+
if res['score'] > 0.05: pred = "Likely human-written"
|
27 |
+
if res['score'] > 0.5: pred = "Likely machine-generated"
|
28 |
+
if res['score'] > 0.95: pred = "Very likely machine-generated"
|
29 |
+
return pred,res['score']
|
30 |
+
|
31 |
+
with gr.Blocks(analytics_enabled=False) as demo:
|
32 |
+
gr.Markdown("""
|
33 |
+
## KInIT Multilingual Machine-Generated Text Detector
|
34 |
+
Trained on [MULTITuDE](https://aclanthology.org/2023.emnlp-main.616/) (news articles) and [MultiSocial](https://arxiv.org/abs/2406.12549) (social media texts) texts in 22 languages.
|
35 |
+
""")
|
36 |
+
gr.Markdown("""
|
37 |
+
**Disclaimer: The detector is based on AI transformer model and is NOT 100% accurate! Usage is intended for research purpose only, as an indicator. Do not use it for direct decision making!**""")
|
38 |
+
gr.Markdown("""To generate examplar text by a large language model, you can use [HuggingFace Chat](https://huggingface.co/chat/).""")
|
39 |
+
t1 = gr.Textbox(lines=10, label='Text',value="Put your text (in any language) in here to try out our multilingual machine-generated text detector.")
|
40 |
+
button1 = gr.Button("Run detection")
|
41 |
+
label1 = gr.Textbox(lines=1, label='Result')
|
42 |
+
score1 = gr.Textbox(lines=1, label='Probability (closer to 0 means higher probability of text being written by a human, closer to 1 means higher probability of text being generated by an AI model)')
|
43 |
+
|
44 |
+
button1.click(predict, inputs=[t1], outputs=[label1,score1], api_name=False)
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
demo.launch(show_api=False, share=share)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
requests
|