File size: 5,991 Bytes
f767c3b 07dbf6e b6452be 07dbf6e f767c3b 07dbf6e d5dcfe2 4dba1b2 07dbf6e 4eddfbb 1c2dc98 07dbf6e cfeb2b5 07dbf6e cfeb2b5 07dbf6e 1683ee2 07dbf6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import streamlit as st
import torch
import os
import pickle
import torch.nn.functional as F
from transformers import BertTokenizer, BertForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
import asyncio
import sys
if sys.platform == "win32":
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
# from huggingface_hub import login
# token = os.getenv("HF_TOKEN") # Read from environment
# if token:
# login(token=token)
# else:
# raise ValueError("HF_TOKEN environment variable is not set.")
# -------------------- Part 1: Prediction --------------------
@st.cache_resource
def load_prediction_model():
tokenizer = BertTokenizer.from_pretrained('https://huggingface.co/bert-base-uncased')
with open('src/label_encoder.pkl', 'rb') as f:
label_encoder = pickle.load(f)
id_to_class = {idx: class_name for idx, class_name in enumerate(label_encoder.classes_)}
model = BertForSequenceClassification.from_pretrained('Divyanshu04/Issue_categorizerv2')
# model.load_state_dict(torch.load('Divyanshu04/Issue_categorizer', map_location=torch.device('cpu'))['model_state_dict'])
# model.eval()
return tokenizer, model, id_to_class
tokenizer_cls, model_cls, id_to_class = load_prediction_model()
def preprocess_texts(texts):
return tokenizer_cls(texts, padding='max_length', truncation=True, max_length=128, return_tensors='pt')
def predict(text):
inputs = preprocess_texts(text)
with torch.no_grad():
outputs = model_cls(**inputs)
probabilities = F.softmax(outputs.logits, dim=1)
top3_probs, top3_classes = torch.topk(probabilities, k=3, dim=1)
top3_class_names = [id_to_class[idx.item()] for idx in top3_classes[0]]
top3_probs = top3_probs[0] * 100
top3_probs_np = top3_probs.cpu().numpy()
formatted_percentages = [f"{p:.4f}%" for p in top3_probs_np]
prediction = top3_class_names[0]
probability = top3_probs_np[0]
return top3_class_names, top3_probs_np, formatted_percentages, prediction, probability
# -------------------- Part 2: Follow-up Generator --------------------
@st.cache_resource
def load_followup_model():
model_path = "https://huggingface.co/Divyanshu04/Insurance_claim_followup_model" # Adjust path as needed
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
model.eval()
return tokenizer, model
tokenizer_seq, model_seq = load_followup_model()
def generate_followup(context, condition=None, max_tokens=64):
prompt = f"Context: {context}"
if condition:
prompt += f"\nCondition: {condition}"
prompt += "\nFollow-up question:"
inputs = tokenizer_seq(prompt, return_tensors="pt", padding=True).to(model_seq.device)
outputs = model_seq.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.9,
num_return_sequences=1
)
return tokenizer_seq.decode(outputs[0], skip_special_tokens=True)
# -------------------- Streamlit UI --------------------
st.title("Tenant-Landlord Query Classifier + Claim Assistant")
if "prev_input" not in st.session_state:
st.session_state.prev_input = ""
if "context" not in st.session_state:
st.session_state.context = ""
user_input = st.text_input("Enter your query:")
if user_input:
with st.spinner("Classifying your query..."):
combined_input = st.session_state.prev_input + " " + user_input if st.session_state.prev_input else user_input
top3_classes, top3_probs, formatted, prediction, probability = predict(combined_input)
if probability > 60:
st.success(f"Prediction: **{prediction}** with confidence **{probability:.2f}%**")
st.write("Top 3 predictions:")
for cls, prob in zip(top3_classes, formatted):
st.write(f"- {cls}: {prob}")
st.session_state.context = combined_input
st.session_state.prev_input = "" # Reset
else:
st.warning("Confidence is low. Please elaborate your query more.")
st.session_state.prev_input = combined_input
# -------------------- Ask to Make a Claim --------------------
if st.session_state.context:
make_claim = st.radio("Do you want to make a claim?", ["Yes", "No"])
if make_claim == "No":
st.info("Thank you! No claim will be made.")
st.stop()
elif make_claim == "Yes":
st.subheader("Claim Assistant - Answer Follow-up Questions")
if "followup_count" not in st.session_state:
st.session_state.followup_count = 0
if "questions" not in st.session_state:
st.session_state.questions = []
if "responses" not in st.session_state:
st.session_state.responses = []
# Generate new follow-up question if needed
if len(st.session_state.questions) <= st.session_state.followup_count and st.session_state.followup_count < 5:
with st.spinner("Generating follow-up question..."):
new_question = generate_followup(st.session_state.context)
st.session_state.questions.append(new_question)
# Render follow-up questions and collect responses
for i in range(len(st.session_state.questions)):
st.markdown(f"**Follow-up Question {i+1}:** {st.session_state.questions[i]}")
response_key = f"response_input_{i}"
response = st.text_input(f"Your response to question {i+1}:", key=response_key)
if response and len(st.session_state.responses) <= i:
st.session_state.responses.append(response)
st.session_state.context += " " + response
st.session_state.followup_count += 1
if st.session_state.followup_count >= 5:
st.success("All follow-up questions answered. Your claim has been registered.")
|