Update src/streamlit_app.py
Browse files- src/streamlit_app.py +2 -2
src/streamlit_app.py
CHANGED
@@ -27,7 +27,7 @@ def load_prediction_model():
|
|
27 |
label_encoder = pickle.load(f)
|
28 |
id_to_class = {idx: class_name for idx, class_name in enumerate(label_encoder.classes_)}
|
29 |
|
30 |
-
model = BertForSequenceClassification.from_pretrained('Divyanshu04/Issue_categorizer', num_labels=len(label_encoder.classes_))
|
31 |
# model.load_state_dict(torch.load('Divyanshu04/Issue_categorizer', map_location=torch.device('cpu'))['model_state_dict'])
|
32 |
model.eval()
|
33 |
return tokenizer, model, id_to_class
|
@@ -58,7 +58,7 @@ def predict(text):
|
|
58 |
|
59 |
@st.cache_resource
|
60 |
def load_followup_model():
|
61 |
-
model_path = "Divyanshu04/Insurance_claim_followup_model" # Adjust path as needed
|
62 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
63 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
64 |
model.eval()
|
|
|
27 |
label_encoder = pickle.load(f)
|
28 |
id_to_class = {idx: class_name for idx, class_name in enumerate(label_encoder.classes_)}
|
29 |
|
30 |
+
model = BertForSequenceClassification.from_pretrained('https://huggingface.co/Divyanshu04/Issue_categorizer', num_labels=len(label_encoder.classes_))
|
31 |
# model.load_state_dict(torch.load('Divyanshu04/Issue_categorizer', map_location=torch.device('cpu'))['model_state_dict'])
|
32 |
model.eval()
|
33 |
return tokenizer, model, id_to_class
|
|
|
58 |
|
59 |
@st.cache_resource
|
60 |
def load_followup_model():
|
61 |
+
model_path = "https://huggingface.co/Divyanshu04/Insurance_claim_followup_model" # Adjust path as needed
|
62 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
63 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
64 |
model.eval()
|