Spaces:
Running
Running
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from omegaconf import OmegaConf | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
import os | |
from torch.nn.utils import weight_norm | |
from transformers import T5EncoderModel, T5Tokenizer # type: ignore | |
from einops import rearrange | |
torch.backends.cuda.enable_mem_efficient_sdp(True) | |
N_REPEAT = 2 # num (virtual batch_size) clones of audio sounds | |
def _shift(x): | |
#print(x.shape, 'BATCH Independent SHIFT\n AudioGen') | |
for i, _slice in enumerate(x): | |
n = x.shape[2] | |
offset = np.random.randint(.24 * n, max(1, .74 * n)) # high should be above >= 0 TBD | |
print(offset) | |
x[i, :, :] = torch.roll(_slice, offset, dims=1) # _slice 2D | |
return x | |
class AudioGen(torch.nn.Module): | |
# https://huggingface.co/facebook/audiogen-medium | |
def __init__(self): | |
super().__init__() | |
_file_1 = hf_hub_download( | |
repo_id='facebook/audiogen-medium', | |
filename="compression_state_dict.bin", | |
cache_dir=os.environ.get('AUDIOCRAFT_CACHE_DIR', None), | |
library_name="audiocraft", | |
library_version= '1.3.0a1') # Found at __init__.py #audiocraft.__version__) | |
pkg = torch.load(_file_1, map_location='cpu')# kwargs = OmegaConf.create(pkg['xp.cfg']) | |
self.compression_model = EncodecModel() | |
self.compression_model.load_state_dict(pkg['best_state'], strict=False) | |
self.compression_model.eval() # ckpt has also unused encoder weights | |
self._chunk_len = 476 | |
_file_2 = hf_hub_download( | |
repo_id='facebook/audiogen-medium', | |
filename="state_dict.bin", | |
cache_dir=os.environ.get('AUDIOCRAFT_CACHE_DIR', None), | |
library_name="audiocraft", | |
library_version= '1.3.0a1') # Found at __init__.py #audiocraft.__version__) | |
pkg = torch.load(_file_2, map_location='cpu') | |
cfg = OmegaConf.create(pkg['xp.cfg']) # CFG inside torch bin | |
_best = pkg['best_state'] | |
_best['t5.output_proj.weight'] = _best.pop('condition_provider.conditioners.description.output_proj.weight')#.to(torch.float) | |
_best['t5.output_proj.bias'] = _best.pop('condition_provider.conditioners.description.output_proj.bias')#.to(torch.float) | |
self.lm = LMModel() | |
self.lm.load_state_dict(pkg['best_state'], strict=True) | |
self.lm.eval() | |
def generate(self, | |
prompt='dogs mewo', | |
duration=2.24, # seconds of audio | |
cache_lim=71, # flush kv cache after cache_lim tok | |
): | |
torch.manual_seed(42) # https://github.com/facebookresearch/audiocraft/issues/111#issuecomment-1614732858 | |
self.lm.cache_lim = cache_lim | |
self.lm.n_draw = int(.8 * duration) + 1 # different beam every 0.47 seconds of audio | |
with torch.autocast(device_type='cpu', dtype=torch.bfloat16): | |
gen_tokens = self.lm.generate( | |
text_condition=[prompt] * N_REPEAT + [''] * N_REPEAT,#['dogs', 'dogs...!', '', ''] | |
max_tokens=int(.04 * duration / N_REPEAT * self.compression_model.frame_rate) + 12) # [bs, 4, 74*self.lm.n_draw] | |
# OOM if vocode all tokens | |
x = [] | |
for i in range(7, gen_tokens.shape[2], self._chunk_len): # min soundscape 2s assures 10 tokens | |
decoded_chunk = self.compression_model.decode(gen_tokens[:, :, i-7:i+self._chunk_len]) | |
x.append(decoded_chunk) | |
x = torch.cat(x, 2) # [bs, 1, 114000] | |
x = _shift(x) # clone() to have xN | |
return x.reshape(-1) #x / (x.abs().max() + 1e-7) | |
class EncodecModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.decoder = SEANetDecoder() | |
self.quantizer = ResidualVectorQuantizer() | |
self.frame_rate = 50 | |
def decode(self, codes): | |
# B,K,T -> B,C,T | |
emb = self.quantizer.decode(codes) | |
return self.decoder(emb) | |
class StreamableLSTM(nn.Module): | |
def __init__(self, | |
dimension, | |
num_layers=2, | |
skip=True): | |
super().__init__() | |
self.skip = skip | |
self.lstm = nn.LSTM(dimension, dimension, num_layers) | |
def forward(self, x): | |
x = x.permute(2, 0, 1) | |
y, _ = self.lstm(x) | |
if self.skip: | |
y = y + x | |
y = y.permute(1, 2, 0) | |
return y | |
class SEANetResnetBlock(nn.Module): | |
def __init__(self, | |
dim, | |
kernel_sizes = [3, 1], | |
pad_mode = 'reflect', | |
compress = 2): | |
super().__init__() | |
hidden = dim // compress | |
block = [] | |
for i, kernel_size in enumerate(kernel_sizes): | |
in_chs = dim if i == 0 else hidden | |
out_chs = dim if i == len(kernel_sizes) - 1 else hidden | |
block += [nn.ELU(), | |
StreamableConv1d(in_chs, | |
out_chs, | |
kernel_size=kernel_size, | |
pad_mode=pad_mode)] | |
self.block = nn.Sequential(*block) | |
def forward(self, x): | |
return x + self.block(x) | |
class SEANetDecoder(nn.Module): | |
# channels=1 dimension=128 n_filters=64 n_residual_layers=1 ratios=[8, 5, 4, 2] | |
# activation='ELU' activation_params={'alpha': 1.0}, final_activation=None | |
# final_activation_params=None norm='weight_norm' | |
# norm_params={} kernel_size=7 last_kernel_size=7 residual_kernel_size=3 dilation_base=2 | |
# causal=False pad_mode='constant' | |
# true_skip=True compress=2 lstm=2 disable_norm_outer_blocks=0 trim_right_ratio=1.0 | |
def __init__(self, | |
channels = 1, | |
dimension = 128, | |
n_filters = 64, | |
n_residual_layers = 1, | |
ratios = [8, 5, 4, 2], | |
kernel_size = 7, | |
last_kernel_size = 7, | |
residual_kernel_size = 3, | |
pad_mode = 'constant', | |
compress = 2, | |
lstm = 2): | |
super().__init__() | |
mult = int(2 ** len(ratios)) | |
model = [ | |
StreamableConv1d(dimension, mult * n_filters, | |
kernel_size, | |
pad_mode=pad_mode) | |
] | |
if lstm: | |
print('\n\n\n\nLSTM IN SEANET\n\n\n\n') | |
model += [StreamableLSTM(mult * n_filters, | |
num_layers=lstm)] | |
# Upsample to raw audio scale | |
for i, ratio in enumerate(ratios): | |
model += [ | |
nn.ELU(), | |
StreamableConvTranspose1d(mult * n_filters, | |
mult * n_filters // 2, | |
kernel_size=ratio * 2, | |
stride=ratio), | |
] | |
# Add residual layers | |
for j in range(n_residual_layers): | |
model += [ | |
SEANetResnetBlock(mult * n_filters // 2, | |
kernel_sizes=[residual_kernel_size, 1], | |
pad_mode=pad_mode, | |
compress=compress)] | |
mult //= 2 | |
# Add final layers | |
model += [ | |
nn.ELU(), | |
StreamableConv1d(n_filters, | |
channels, | |
last_kernel_size, | |
pad_mode=pad_mode)] | |
self.model=nn.Sequential(*model) | |
def forward(self, z): | |
return self.model(z) | |
def unpad1d(x, paddings): | |
padding_left, padding_right = paddings | |
end = x.shape[-1] - padding_right | |
return x[..., padding_left: end] | |
class NormConv1d(nn.Module): | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
self.conv = weight_norm(nn.Conv1d(*args, **kwargs)) # norm = weight_norm | |
def forward(self, x): | |
return self.conv(x) | |
class NormConvTranspose1d(nn.Module): | |
def __init__(self, *args, causal: bool = False, norm: str = 'none', | |
norm_kwargs = {}, **kwargs): | |
super().__init__() | |
self.convtr = weight_norm(nn.ConvTranspose1d(*args, **kwargs)) | |
def forward(self, x): | |
return self.convtr(x) | |
class StreamableConv1d(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
groups=1, | |
bias=True, | |
pad_mode='reflect'): | |
super().__init__() | |
if (stride != 1) or (groups != 1): | |
raise ValueError | |
self.conv = NormConv1d(in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
groups=groups, | |
bias=bias) | |
self.pad_mode = pad_mode | |
def forward(self, x): | |
kernel_size = self.conv.conv.kernel_size[0] | |
kernel_size = (kernel_size - 1) * self.conv.conv.dilation[0] + 1 | |
padding_total = kernel_size - self.conv.conv.stride[0] | |
padding_right = padding_total // 2 | |
padding_left = padding_total - padding_right | |
# x = pad1d(x, (padding_left, padding_right), mode=self.pad_mode) | |
x = F.pad(x, (padding_left, padding_right), self.pad_mode) | |
return self.conv(x) | |
class StreamableConvTranspose1d(nn.Module): | |
def __init__(self, in_channels: int, out_channels: int, | |
kernel_size: int, stride: int = 1, causal: bool = False, | |
norm: str = 'none', trim_right_ratio: float = 1., | |
norm_kwargs = {}): | |
super().__init__() | |
self.convtr = NormConvTranspose1d(in_channels, | |
out_channels, | |
kernel_size, | |
stride) | |
def forward(self, x): | |
padding_total = self.convtr.convtr.kernel_size[0] - self.convtr.convtr.stride[0] | |
y = self.convtr(x) | |
# Asymmetric padding required for odd strides | |
# print('\n \n\n\nn\n\n\nnANTICAUSAL T\n\n\n') | |
padding_right = padding_total // 2 | |
padding_left = padding_total - padding_right | |
y = unpad1d(y, (padding_left, padding_right)) | |
return y | |
# VQ | |
class EuclideanCodebook(nn.Module): | |
def __init__(self, | |
dim, | |
codebook_size): | |
super().__init__() | |
self.register_buffer("embed", torch.zeros(codebook_size, dim)) | |
class VectorQuantization(nn.Module): | |
def __init__(self, | |
dim, | |
codebook_size): | |
super().__init__() | |
self._codebook = EuclideanCodebook(dim=dim, | |
codebook_size=codebook_size) | |
def decode(self, _ind): | |
return F.embedding(_ind, self._codebook.embed) | |
class ResidualVectorQuantization(nn.Module): | |
def __init__(self, *, num_quantizers, **kwargs): | |
super().__init__() | |
self.layers = nn.ModuleList( | |
[VectorQuantization(**kwargs) for _ in range(num_quantizers)] | |
) | |
def decode(self, _ind): | |
x = 0.0 | |
for i, _code in enumerate(_ind): | |
x = x + self.layers[i].decode(_code) | |
return x.transpose(1, 2) | |
class ResidualVectorQuantizer(nn.Module): | |
# dimension=128 n_q=4 q_dropout=False bins=2048 decay=0.99 kmeans_init=True | |
# kmeans_iters=50 threshold_ema_dead_code=2 | |
# orthogonal_reg_weight=0.0 orthogonal_reg_active_codes_only=False | |
# orthogonal_reg_max_codes=None | |
def __init__( | |
self, | |
dimension = 128, | |
n_q = 4, | |
bins = 2048 | |
): | |
super().__init__() | |
self.vq = ResidualVectorQuantization(dim=dimension, | |
codebook_size=bins, | |
num_quantizers=n_q) | |
def decode(self, codes): | |
# codes is [B, K, T], with T frames, K nb of codebooks, vq.decode expects [K, B, T]. | |
return self.vq.decode(codes.transpose(0, 1)) | |
class T5(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.output_proj = nn.Linear(1024, # t5-large | |
1536) # lm hidden | |
self.t5_tokenizer = T5Tokenizer.from_pretrained('t5-large', legacy=True) | |
t5 = T5EncoderModel.from_pretrained('t5-large').train(mode=False) | |
# this makes sure that the t5 is not part | |
# of the saved checkpoint | |
self.__dict__['t5'] = t5.to('cpu') | |
def forward(self, prompt): | |
with torch.set_grad_enabled(False): #, torch.autocast(device_type='cpu', dtype=torch.float32): | |
bs = len(prompt) // 2 | |
d = self.t5_tokenizer(prompt, | |
return_tensors='pt', | |
padding=True).to(self.output_proj.bias.device) | |
d['attention_mask'][bs:, :] = 0 # null condition t5 attn_mask should be zero | |
x = self.t5(input_ids=d['input_ids'], | |
attention_mask=d['attention_mask']).last_hidden_state # no kv | |
# Float 16 | |
# > self.output_proj() is outside of autocast of t5 - however inside the autocast of lm thus computed in torch.float16 | |
x = self.output_proj(x) # nn.Linear() - produces different result if there is no duplicate txt condition here | |
x[bs:, :, :] = 0 # venv/../site-packages/audiocraft/modules/conditioners.py -> tokenize() | |
return x | |
class LMModel(nn.Module): | |
def __init__(self, | |
n_q = 4, | |
card = 2048, | |
dim = 1536 | |
): | |
super().__init__() | |
self.cache_lim = -1 | |
self.t5 = T5() | |
self.card = card # 2048 | |
self.n_draw = 1 # draw > 1 tokens of different CFG scale | |
# batch size > 1 is slower from n_draw as calls transformer on larger batch | |
self.emb = nn.ModuleList([nn.Embedding(self.card + 1, dim) for _ in range(n_q)]) # EMBEDDING HAS 2049 | |
self.transformer = StreamingTransformer() | |
self.out_norm = nn.LayerNorm(dim, eps=1e-5) | |
self.linears = nn.ModuleList([nn.Linear(dim, self.card, bias=False) for _ in range(n_q)]) # LINEAR DOESNT HAVE 2049 | |
def forward(self, | |
sequence, | |
condition_tensors=None, | |
cache_position=None | |
): | |
bs, n_q, time_frames = sequence.shape # [bs, 4, time] | |
input_ = sum([self.emb[k](sequence[:, k]) for k in range(n_q)]) | |
out = self.transformer(torch.cat([input_, input_], 0), # duplicate null condition (bs x 2) for ClassifierFreeGuidance | |
cross_attention_src=condition_tensors, | |
cache_position=cache_position) | |
out = self.out_norm(out) | |
logits = torch.stack([self.linears[k](out) for k in range(n_q)], dim=1) # [2*bs, 4, 1, 2048] | |
logits = 3 * logits[:bs, :, :, :] - self._scale * logits[bs:, :, :, :] # [ bs, 4, n_draw, 2048] | |
#bs, n_q, n_draw, vocab = logits.shape | |
tokens = torch.multinomial(torch.softmax(logits.view(bs * self.n_draw * n_q, 2048), dim=1), | |
num_samples=1) | |
return tokens.view(bs, n_q, self.n_draw).transpose(1, 2) | |
def generate(self, | |
max_tokens=None, | |
text_condition=None | |
): | |
x = self.t5(text_condition) | |
bs = x.shape[0] // 2 # has null conditions - bs*2*N_REPEAT applys in builders.py | |
self._scale = .3 * torch.rand(1, 1, self.n_draw, 1, device=x.device) + 1.94 | |
cache_position = 0 | |
out_codes = torch.full((bs, | |
self.n_draw, | |
4, | |
4 + 3 + max_tokens), # 4 + max_tokens + 4-1 to have sufficient to index the 1st antidiagonal of 4x4 + 4 xtra tokens | |
self.card, | |
dtype=torch.long, | |
device=x.device) # [bs, n_draw, 4, dur] | |
# A/R | |
for offset in range(0, max_tokens + 4 - 1): # max_tokens + n_q - 1 | |
# extract diagonal via indexing out_codes[ [0, 1, 2, 3], [0, 1, 2, 3] ] | |
next_token = self.forward(out_codes[:, 0, [0, 1, 2, 3], torch.tensor([3, 2, 1, 0]) + offset][:, :, None], # index diagonal & exapnd to [bs, n_q, dur=1] | |
#gen_sequence[:, 0, :, offset-1:offset], # DIAGINDEXING for setting prediction of lm into gen_sequence THE GENSEQUENCE has to be un-delayed in the end [Because it has to be de-delayed for the vocoder then is actually only the lm input that requires to see the delay thus we could just feed by diaggather] so it matches gen_codes -1 a[[0, 1, 2, 3], torch.tensor([0, 1, 2, 3]) + 5] the gen_sequence is indexed by vertical column and fed to lm however the prediction of lm is place diagonally with delay to the gen_sequence | |
condition_tensors=x, # utilisation of the attention mask of txt condition ? | |
cache_position=cache_position) # [bs, n_draw, 4] | |
# Fill of next_token should be also placed on antidiagonal [not column] | |
# Do Not Overwrite 2048 of TRIU/TRIL = START/END => Do Not Fill them by Predicted Tokens | |
# 0-th antidiagonal should be full of card = [2048, 2048, 2048, 2048] | |
# | |
# [2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6, 2048, 2048, 2048], | |
# [2048, 2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6, 2048, 2048], | |
# [2048, 2048, 2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6, 2048], | |
# [2048, 2048, 2048, 2048, 2048, 2048, 2048, 0, 1, 2, 3, 4, 5, 6]] | |
# NO OVerWriting | |
if offset == 0: | |
next_token[:, :, 1:4] = 2048 # self.card - bottom 3 entries of the antidiagonal should remain 2048 | |
elif offset == 1: | |
next_token[:, :, 2:4] = 2048 # bottom 2 entries of the antidiagonal should remain 2048 | |
elif offset == 2: | |
next_token[:, :, 3:4] = 2048 | |
elif offset == max_tokens: | |
next_token[:, :, 0:1] = 2048 # top 1 entry of the antidiagonal should stay to 2048 | |
elif offset == (max_tokens + 1): | |
next_token[:, :, 0:2] = 2048 | |
elif offset == (max_tokens + 2): | |
next_token[:, :, 0:3] = 2048 | |
else: # offset 3,4,5,6,7...... max_tokens-1 # FILL Complete n_q = 4 ANTIDIAGONAL ENTRIES | |
pass #print('No delete anti-diag') | |
out_codes[:, :, [0, 1, 2, 3], torch.tensor([3, 2, 1, 0]) + offset + 1] = next_token | |
# Sink Attn | |
if (offset > 0) and (offset % self.cache_lim) == 0: | |
n_preserve = 4 | |
self.transformer._flush(n_preserve=n_preserve) | |
cache_position = n_preserve | |
else: | |
cache_position += 1 | |
# [bs, n_draw, 4, time+xtra] -> [bs, 4, n_draw, time] -> [bs, 4, time * n_draw] | |
out_codes = out_codes[:, :, :, 4:max_tokens+4].transpose(1, 2).reshape(bs, 4, self.n_draw * max_tokens) | |
# flush for next API call | |
self.transformer._flush() | |
return out_codes # SKIP THE 4 fill 2048 | |
def create_sin_embedding(positions, | |
dim, | |
max_period=10000 | |
): | |
# assert dim % 2 == 0 | |
half_dim = dim // 2 | |
positions = positions.to(torch.float) | |
adim = torch.arange(half_dim, device=positions.device, | |
dtype=torch.float).view(1, 1, -1) | |
max_period_tensor = torch.full([], | |
max_period, | |
device=positions.device, | |
dtype=torch.float) # avoid sync point | |
phase = positions / (max_period_tensor ** (adim / (half_dim - 1))) | |
# OFFICIAL is torch.float32 HOWEVER self_attn.in_prod_weight = torch.float16 | |
return torch.cat([torch.cos(phase), torch.sin(phase)], dim=-1) | |
class StreamingMultiheadAttention(nn.Module): | |
def __init__(self, | |
embed_dim, | |
num_heads, | |
cross_attention=False, | |
): | |
super().__init__() | |
self.cross_attention = cross_attention | |
# if not self.cross_attention then it has kvcachingn | |
self.k_history = None | |
# cleanup history through LM inside GENERATION - Each 0,..,47 mha has different kv history | |
self.v_history = None | |
self.num_heads = num_heads | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False) | |
self.register_buffer('in_proj_weight', torch.ones((3 * embed_dim, embed_dim), | |
dtype=torch.float)) | |
def forward(self, | |
query, | |
key=None, | |
value=None): | |
layout = "b h t d" | |
if self.cross_attention: | |
# Different queries, keys, values > split in_proj_weight | |
dim = self.in_proj_weight.shape[0] // 3 | |
q = nn.functional.linear(query, self.in_proj_weight[:dim]) | |
k = nn.functional.linear(key, self.in_proj_weight[dim: 2 * dim]) | |
v = nn.functional.linear(value, self.in_proj_weight[2 * dim:]) | |
q, k, v = [ | |
rearrange(x, f"b t (h d) -> {layout}", h=self.num_heads) for x in [q, k, v]] | |
else: | |
# Here <else> = self_attention for audio with itself (above is cross attention txt) | |
# HISTORY - DIFFERENT FOR EACH TRANSF LAYER | |
# here we have different floating values from official | |
projected = nn.functional.linear(query, self.in_proj_weight, None) | |
# print(query.sum(), projected.sum() , self.in_proj_weight.sum(), 'Lc') # verified official AudioGen values | |
bound_layout = "b h p t d" | |
packed = rearrange( | |
projected, f"b t (p h d) -> {bound_layout}", p=3, h=self.num_heads) | |
q, k, v = packed.unbind(dim=2) | |
if self.k_history is not None: | |
# IF ctrl^c during live_demo the assigning of each of kv is non-atomic k!=v | |
# thus it will try to continue with incompatible k/v dims! | |
self.k_history = torch.cat([self.k_history, k], 2) | |
self.v_history = torch.cat([self.v_history, v], 2) | |
else: | |
self.k_history = k | |
self.v_history = v | |
# Assign Completed k / v to k / v | |
k = self.k_history | |
v = self.v_history | |
# -> kv CACHE ONLY APPLIES if not self.cross_attention | |
x = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=None, is_causal=False, dropout_p=0.0) | |
x = rearrange(x, f"{layout} -> b t (h d)", h=self.num_heads) | |
x = self.out_proj(x) | |
return x | |
class StreamingTransformerLayer(nn.Module): | |
def __init__(self, | |
d_model, | |
num_heads, | |
dim_feedforward): | |
super().__init__() | |
self.self_attn = StreamingMultiheadAttention(embed_dim=d_model, | |
num_heads=num_heads) | |
self.linear1 = nn.Linear(d_model, dim_feedforward, bias=False) | |
self.linear2 = nn.Linear(dim_feedforward, d_model, bias=False) | |
self.cross_attention = StreamingMultiheadAttention(embed_dim=d_model, | |
num_heads=num_heads, | |
cross_attention=True) | |
self.norm_cross = nn.LayerNorm(d_model, eps=1e-5) | |
self.norm1 = nn.LayerNorm(d_model, eps=1e-5) | |
self.norm2 = nn.LayerNorm(d_model, eps=1e-5) | |
def forward(self, | |
x, | |
cross_attention_src=None): | |
x = x + self.self_attn(self.norm1(x)) | |
x = x + self.cross_attention(query=self.norm_cross(x), | |
key=cross_attention_src, | |
value=cross_attention_src) # txtcondition | |
x = x + self.linear2(F.gelu(self.linear1(self.norm2(x)))) | |
return x | |
class StreamingTransformer(nn.Module): | |
def __init__(self, | |
d_model=1536, | |
num_heads=24, | |
num_layers=48, | |
dim_feedforward=6144): | |
super().__init__() | |
self.layers = nn.ModuleList( | |
[ | |
StreamingTransformerLayer(d_model=d_model, | |
num_heads=num_heads, | |
dim_feedforward=dim_feedforward) for _ in range(num_layers) | |
] | |
) | |
def forward(self, | |
x, | |
cache_position=None, | |
cross_attention_src=None): | |
x = x + create_sin_embedding( | |
torch.zeros(x.shape[0], 1, 1, device=x.device) + cache_position, 1536) | |
for lay in self.layers: | |
x = lay(x, | |
cross_attention_src=cross_attention_src) | |
return x | |
def _flush(self, | |
n_preserve=None): | |
for lay in self.layers: | |
if n_preserve is not None: | |
# cache position is difficult to choose to also preserve kv from end | |
lay.self_attn.k_history = lay.self_attn.k_history[:, :, :n_preserve, :] | |
lay.self_attn.v_history = lay.self_attn.v_history[:, :, :n_preserve, :] | |
else: | |
lay.self_attn.k_history = None | |
lay.self_attn.v_history = None | |
if __name__ == '__main__': | |
import audiofile | |
model = AudioGen().to('cpu') | |
x = model.generate(prompt='swims in lake frogs', duration=6.4).cpu().numpy() | |
audiofile.write('_sound_.wav', x, 16000) | |