PawMatchAI / multi_head_scorer.py
DawnC's picture
Upload 18 files
1e4c9bc verified
import numpy as np
import json
from typing import Dict, List, Tuple, Optional, Any, Set
from dataclasses import dataclass, field
from abc import ABC, abstractmethod
import traceback
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from query_understanding import QueryDimensions
from constraint_manager import FilterResult
@dataclass
class DimensionalScores:
"""多維度評分結果"""
semantic_scores: Dict[str, float] = field(default_factory=dict)
attribute_scores: Dict[str, float] = field(default_factory=dict)
fused_scores: Dict[str, float] = field(default_factory=dict)
bidirectional_scores: Dict[str, float] = field(default_factory=dict)
confidence_weights: Dict[str, float] = field(default_factory=dict)
@dataclass
class BreedScore:
"""品種總體評分結果"""
breed_name: str
final_score: float
dimensional_breakdown: Dict[str, float] = field(default_factory=dict)
semantic_component: float = 0.0
attribute_component: float = 0.0
bidirectional_bonus: float = 0.0
confidence_score: float = 1.0
explanation: Dict[str, Any] = field(default_factory=dict)
class ScoringHead(ABC):
"""抽象評分頭基類"""
@abstractmethod
def score_dimension(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions,
dimension_type: str) -> float:
"""為特定維度評分"""
pass
class SemanticScoringHead(ScoringHead):
"""語義評分頭"""
def __init__(self, sbert_model: Optional[SentenceTransformer] = None):
self.sbert_model = sbert_model
self.dimension_embeddings = {}
if self.sbert_model:
self._build_dimension_embeddings()
def _build_dimension_embeddings(self):
"""建立維度模板嵌入"""
dimension_templates = {
'spatial_apartment': "small apartment living, limited space, no yard, urban environment",
'spatial_house': "house with yard, outdoor space, suburban living, large property",
'activity_low': "low energy, minimal exercise needs, calm lifestyle, indoor activities",
'activity_moderate': "moderate exercise, daily walks, balanced activity level",
'activity_high': "high energy, vigorous exercise, outdoor sports, active lifestyle",
'noise_low': "quiet, rarely barks, peaceful, suitable for noise-sensitive environments",
'noise_moderate': "moderate barking, occasional vocalizations, average noise level",
'noise_high': "vocal, frequent barking, alert dog, comfortable with noise",
'size_small': "small compact breed, easy to handle, portable size",
'size_medium': "medium sized dog, balanced proportions, moderate size",
'size_large': "large impressive dog, substantial presence, bigger breed",
'family_children': "child-friendly, gentle with kids, family-oriented, safe around children",
'family_elderly': "calm companion, gentle nature, suitable for seniors, low maintenance",
'maintenance_low': "low grooming needs, minimal care requirements, easy maintenance",
'maintenance_moderate': "regular grooming, moderate care needs, standard maintenance",
'maintenance_high': "high grooming requirements, professional care, intensive maintenance"
}
for key, template in dimension_templates.items():
if self.sbert_model:
embedding = self.sbert_model.encode(template, convert_to_tensor=False)
self.dimension_embeddings[key] = embedding
def score_dimension(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions,
dimension_type: str) -> float:
"""語義維度評分"""
if not self.sbert_model or dimension_type not in self.dimension_embeddings:
return 0.5 # 預設中性分數
try:
# 建立品種描述
breed_description = self._create_breed_description(breed_info, dimension_type)
# 生成嵌入
breed_embedding = self.sbert_model.encode(breed_description, convert_to_tensor=False)
dimension_embedding = self.dimension_embeddings[dimension_type]
# 計算相似度
similarity = cosine_similarity([breed_embedding], [dimension_embedding])[0][0]
# 正規化到 0-1 範圍
normalized_score = (similarity + 1) / 2 # 從 [-1,1] 轉換到 [0,1]
return max(0.0, min(1.0, normalized_score))
except Exception as e:
print(f"Error in semantic scoring for {dimension_type}: {str(e)}")
return 0.5
def _create_breed_description(self, breed_info: Dict[str, Any],
dimension_type: str) -> str:
"""為特定維度創建品種描述"""
breed_name = breed_info.get('display_name', breed_info.get('breed_name', ''))
if dimension_type.startswith('spatial_'):
size = breed_info.get('size', 'medium')
exercise = breed_info.get('exercise_needs', 'moderate')
return f"{breed_name} is a {size} dog with {exercise} exercise needs"
elif dimension_type.startswith('activity_'):
exercise = breed_info.get('exercise_needs', 'moderate')
temperament = breed_info.get('temperament', '')
return f"{breed_name} has {exercise} exercise requirements and {temperament} temperament"
elif dimension_type.startswith('noise_'):
noise_level = breed_info.get('noise_level', 'moderate')
temperament = breed_info.get('temperament', '')
return f"{breed_name} has {noise_level} noise level and {temperament} nature"
elif dimension_type.startswith('size_'):
size = breed_info.get('size', 'medium')
return f"{breed_name} is a {size} sized dog breed"
elif dimension_type.startswith('family_'):
children = breed_info.get('good_with_children', 'Yes')
temperament = breed_info.get('temperament', '')
return f"{breed_name} is {children} with children and has {temperament} temperament"
elif dimension_type.startswith('maintenance_'):
grooming = breed_info.get('grooming_needs', 'moderate')
care_level = breed_info.get('care_level', 'moderate')
return f"{breed_name} requires {grooming} grooming and {care_level} care level"
return f"{breed_name} is a dog breed with various characteristics"
class AttributeScoringHead(ScoringHead):
"""屬性評分頭"""
def __init__(self):
self.scoring_matrices = self._initialize_scoring_matrices()
def _initialize_scoring_matrices(self) -> Dict[str, Dict[str, float]]:
"""初始化評分矩陣"""
return {
'spatial_scoring': {
# (user_preference, breed_attribute) -> score
('apartment', 'small'): 1.0,
('apartment', 'medium'): 0.6,
('apartment', 'large'): 0.2,
('apartment', 'giant'): 0.0,
('house', 'small'): 0.7,
('house', 'medium'): 0.9,
('house', 'large'): 1.0,
('house', 'giant'): 1.0,
},
'activity_scoring': {
('low', 'low'): 1.0,
('low', 'moderate'): 0.7,
('low', 'high'): 0.2,
('low', 'very high'): 0.0,
('moderate', 'low'): 0.8,
('moderate', 'moderate'): 1.0,
('moderate', 'high'): 0.8,
('high', 'moderate'): 0.7,
('high', 'high'): 1.0,
('high', 'very high'): 1.0,
},
'noise_scoring': {
('low', 'low'): 1.0,
('low', 'moderate'): 0.6,
('low', 'high'): 0.1,
('moderate', 'low'): 0.8,
('moderate', 'moderate'): 1.0,
('moderate', 'high'): 0.7,
('high', 'low'): 0.7,
('high', 'moderate'): 0.9,
('high', 'high'): 1.0,
},
'size_scoring': {
('small', 'small'): 1.0,
('small', 'medium'): 0.5,
('small', 'large'): 0.2,
('medium', 'small'): 0.6,
('medium', 'medium'): 1.0,
('medium', 'large'): 0.6,
('large', 'medium'): 0.7,
('large', 'large'): 1.0,
('large', 'giant'): 0.9,
},
'maintenance_scoring': {
('low', 'low'): 1.0,
('low', 'moderate'): 0.6,
('low', 'high'): 0.2,
('moderate', 'low'): 0.8,
('moderate', 'moderate'): 1.0,
('moderate', 'high'): 0.7,
('high', 'low'): 0.6,
('high', 'moderate'): 0.8,
('high', 'high'): 1.0,
}
}
def score_dimension(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions,
dimension_type: str) -> float:
"""屬性維度評分"""
try:
if dimension_type.startswith('spatial_'):
return self._score_spatial_compatibility(breed_info, dimensions)
elif dimension_type.startswith('activity_'):
return self._score_activity_compatibility(breed_info, dimensions)
elif dimension_type.startswith('noise_'):
return self._score_noise_compatibility(breed_info, dimensions)
elif dimension_type.startswith('size_'):
return self._score_size_compatibility(breed_info, dimensions)
elif dimension_type.startswith('family_'):
return self._score_family_compatibility(breed_info, dimensions)
elif dimension_type.startswith('maintenance_'):
return self._score_maintenance_compatibility(breed_info, dimensions)
else:
return 0.5 # 預設中性分數
except Exception as e:
print(f"Error in attribute scoring for {dimension_type}: {str(e)}")
return 0.5
def _score_spatial_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""空間相容性評分"""
if not dimensions.spatial_constraints:
return 0.5
breed_size = breed_info.get('size', 'medium').lower()
total_score = 0.0
for spatial_constraint in dimensions.spatial_constraints:
key = (spatial_constraint, breed_size)
score = self.scoring_matrices['spatial_scoring'].get(key, 0.5)
total_score += score
return total_score / len(dimensions.spatial_constraints)
def _score_activity_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""活動相容性評分"""
if not dimensions.activity_level:
return 0.5
breed_exercise = breed_info.get('exercise_needs', 'moderate').lower()
# 清理品種運動需求字串
if 'very high' in breed_exercise:
breed_exercise = 'very high'
elif 'high' in breed_exercise:
breed_exercise = 'high'
elif 'low' in breed_exercise:
breed_exercise = 'low'
else:
breed_exercise = 'moderate'
total_score = 0.0
for activity_level in dimensions.activity_level:
key = (activity_level, breed_exercise)
score = self.scoring_matrices['activity_scoring'].get(key, 0.5)
total_score += score
return total_score / len(dimensions.activity_level)
def _score_noise_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""噪音相容性評分"""
if not dimensions.noise_preferences:
return 0.5
breed_noise = breed_info.get('noise_level', 'moderate').lower()
total_score = 0.0
for noise_pref in dimensions.noise_preferences:
key = (noise_pref, breed_noise)
score = self.scoring_matrices['noise_scoring'].get(key, 0.5)
total_score += score
return total_score / len(dimensions.noise_preferences)
def _score_size_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""尺寸相容性評分"""
if not dimensions.size_preferences:
return 0.5
breed_size = breed_info.get('size', 'medium').lower()
total_score = 0.0
for size_pref in dimensions.size_preferences:
key = (size_pref, breed_size)
score = self.scoring_matrices['size_scoring'].get(key, 0.5)
total_score += score
return total_score / len(dimensions.size_preferences)
def _score_family_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""家庭相容性評分"""
if not dimensions.family_context:
return 0.5
good_with_children = breed_info.get('good_with_children', 'Yes')
temperament = breed_info.get('temperament', '').lower()
total_score = 0.0
score_count = 0
for family_context in dimensions.family_context:
if family_context == 'children':
if good_with_children == 'Yes':
total_score += 1.0
elif good_with_children == 'No':
total_score += 0.1
else:
total_score += 0.6
score_count += 1
elif family_context == 'elderly':
# 溫和、冷靜的品種適合老年人
if any(trait in temperament for trait in ['gentle', 'calm', 'docile']):
total_score += 1.0
elif any(trait in temperament for trait in ['energetic', 'hyperactive']):
total_score += 0.3
else:
total_score += 0.7
score_count += 1
elif family_context == 'single':
# 大多數品種都適合單身人士
total_score += 0.8
score_count += 1
return total_score / max(1, score_count)
def _score_maintenance_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""維護相容性評分"""
if not dimensions.maintenance_level:
return 0.5
breed_grooming = breed_info.get('grooming_needs', 'moderate').lower()
total_score = 0.0
for maintenance_level in dimensions.maintenance_level:
key = (maintenance_level, breed_grooming)
score = self.scoring_matrices['maintenance_scoring'].get(key, 0.5)
total_score += score
return total_score / len(dimensions.maintenance_level)
class MultiHeadScorer:
"""
多頭評分系統
結合語義和屬性評分,提供雙向相容性評估
"""
def __init__(self, sbert_model: Optional[SentenceTransformer] = None):
self.sbert_model = sbert_model
self.semantic_head = SemanticScoringHead(sbert_model)
self.attribute_head = AttributeScoringHead()
self.dimension_weights = self._initialize_dimension_weights()
self.head_fusion_weights = self._initialize_head_fusion_weights()
def _initialize_dimension_weights(self) -> Dict[str, float]:
"""初始化維度權重"""
return {
'activity_compatibility': 0.35, # 最高優先級:生活方式匹配
'noise_compatibility': 0.25, # 關鍵:居住和諧
'spatial_compatibility': 0.15, # 基本:物理約束
'family_compatibility': 0.10, # 重要:社交相容性
'maintenance_compatibility': 0.10, # 實際:持續護理評估
'size_compatibility': 0.05 # 基本:偏好匹配
}
def _initialize_head_fusion_weights(self) -> Dict[str, Dict[str, float]]:
"""初始化頭融合權重"""
return {
'activity_compatibility': {'semantic': 0.4, 'attribute': 0.6},
'noise_compatibility': {'semantic': 0.3, 'attribute': 0.7},
'spatial_compatibility': {'semantic': 0.3, 'attribute': 0.7},
'family_compatibility': {'semantic': 0.5, 'attribute': 0.5},
'maintenance_compatibility': {'semantic': 0.4, 'attribute': 0.6},
'size_compatibility': {'semantic': 0.2, 'attribute': 0.8}
}
def score_breeds(self, candidate_breeds: Set[str],
dimensions: QueryDimensions) -> List[BreedScore]:
"""
為候選品種評分
Args:
candidate_breeds: 通過約束篩選的候選品種
dimensions: 查詢維度
Returns:
List[BreedScore]: 品種評分結果列表
"""
try:
breed_scores = []
# 為每個品種計算分數
for breed in candidate_breeds:
breed_info = self._get_breed_info(breed)
score_result = self._score_single_breed(breed_info, dimensions)
breed_scores.append(score_result)
# 按最終分數排序
breed_scores.sort(key=lambda x: x.final_score, reverse=True)
return breed_scores
except Exception as e:
print(f"Error scoring breeds: {str(e)}")
print(traceback.format_exc())
return []
def _get_breed_info(self, breed: str) -> Dict[str, Any]:
"""獲取品種資訊"""
try:
# 基本品種資訊
breed_info = get_dog_description(breed) or {}
# 健康資訊
health_info = breed_health_info.get(breed, {})
# 噪音資訊
noise_info = breed_noise_info.get(breed, {})
# 整合資訊
return {
'breed_name': breed,
'display_name': breed.replace('_', ' '),
'size': breed_info.get('Size', '').lower(),
'exercise_needs': breed_info.get('Exercise Needs', '').lower(),
'grooming_needs': breed_info.get('Grooming Needs', '').lower(),
'temperament': breed_info.get('Temperament', '').lower(),
'good_with_children': breed_info.get('Good with Children', 'Yes'),
'care_level': breed_info.get('Care Level', '').lower(),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'noise_level': noise_info.get('noise_level', 'moderate').lower(),
'description': breed_info.get('Description', ''),
'raw_breed_info': breed_info,
'raw_health_info': health_info,
'raw_noise_info': noise_info
}
except Exception as e:
print(f"Error getting breed info for {breed}: {str(e)}")
return {
'breed_name': breed,
'display_name': breed.replace('_', ' ')
}
def _score_single_breed(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> BreedScore:
"""為單一品種評分"""
try:
dimensional_scores = {}
semantic_total = 0.0
attribute_total = 0.0
# 動態權重分配(基於用戶表達的維度)
active_dimensions = self._get_active_dimensions(dimensions)
adjusted_weights = self._adjust_dimension_weights(active_dimensions)
# 為每個活躍維度評分
for dimension, weight in adjusted_weights.items():
# 語義評分
semantic_score = self.semantic_head.score_dimension(
breed_info, dimensions, dimension
)
# 屬性評分
attribute_score = self.attribute_head.score_dimension(
breed_info, dimensions, dimension
)
# 頭融合
fusion_weights = self.head_fusion_weights.get(
dimension, {'semantic': 0.5, 'attribute': 0.5}
)
fused_score = (semantic_score * fusion_weights['semantic'] +
attribute_score * fusion_weights['attribute'])
dimensional_scores[dimension] = fused_score
semantic_total += semantic_score * weight
attribute_total += attribute_score * weight
# 雙向相容性評估
bidirectional_bonus = self._calculate_bidirectional_bonus(
breed_info, dimensions
)
# Apply size bias correction
bias_correction = self._calculate_size_bias_correction(breed_info, dimensions)
# 計算最終分數
base_score = sum(score * adjusted_weights[dim]
for dim, score in dimensional_scores.items())
# Apply corrections
final_score = max(0.0, min(1.0, base_score + bidirectional_bonus + bias_correction))
# 信心度評估
confidence_score = self._calculate_confidence(dimensions)
return BreedScore(
breed_name=breed_info.get('display_name', breed_info['breed_name']),
final_score=final_score,
dimensional_breakdown=dimensional_scores,
semantic_component=semantic_total,
attribute_component=attribute_total,
bidirectional_bonus=bidirectional_bonus,
confidence_score=confidence_score,
explanation=self._generate_explanation(breed_info, dimensions, dimensional_scores)
)
except Exception as e:
print(f"Error scoring breed {breed_info.get('breed_name', 'unknown')}: {str(e)}")
return BreedScore(
breed_name=breed_info.get('display_name', breed_info.get('breed_name', 'Unknown')),
final_score=0.5,
confidence_score=0.0
)
def _get_active_dimensions(self, dimensions: QueryDimensions) -> Set[str]:
"""獲取活躍的維度"""
active = set()
if dimensions.spatial_constraints:
active.add('spatial_compatibility')
if dimensions.activity_level:
active.add('activity_compatibility')
if dimensions.noise_preferences:
active.add('noise_compatibility')
if dimensions.size_preferences:
active.add('size_compatibility')
if dimensions.family_context:
active.add('family_compatibility')
if dimensions.maintenance_level:
active.add('maintenance_compatibility')
return active
def _adjust_dimension_weights(self, active_dimensions: Set[str]) -> Dict[str, float]:
"""調整維度權重"""
if not active_dimensions:
return self.dimension_weights
# 只為活躍維度分配權重
active_weights = {dim: weight for dim, weight in self.dimension_weights.items()
if dim in active_dimensions}
# 正規化權重總和為 1.0
total_weight = sum(active_weights.values())
if total_weight > 0:
active_weights = {dim: weight / total_weight
for dim, weight in active_weights.items()}
return active_weights
def _calculate_bidirectional_bonus(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""計算雙向相容性獎勵"""
try:
bonus = 0.0
# 正向相容性:品種滿足用戶需求
forward_compatibility = self._assess_forward_compatibility(breed_info, dimensions)
# 反向相容性:用戶生活方式適合品種需求
reverse_compatibility = self._assess_reverse_compatibility(breed_info, dimensions)
# 雙向獎勵(較為保守)
bonus = min(0.1, (forward_compatibility + reverse_compatibility) * 0.05)
return bonus
except Exception as e:
print(f"Error calculating bidirectional bonus: {str(e)}")
return 0.0
def _assess_forward_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""評估正向相容性"""
compatibility = 0.0
# 空間需求匹配
if 'apartment' in dimensions.spatial_constraints:
size = breed_info.get('size', '')
if 'small' in size:
compatibility += 0.3
elif 'medium' in size:
compatibility += 0.1
# 活動需求匹配
if 'low' in dimensions.activity_level:
exercise = breed_info.get('exercise_needs', '')
if 'low' in exercise:
compatibility += 0.3
elif 'moderate' in exercise:
compatibility += 0.1
return compatibility
def _assess_reverse_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""評估反向相容性"""
compatibility = 0.0
# 品種是否能在用戶環境中茁壯成長
exercise_needs = breed_info.get('exercise_needs', '')
if 'high' in exercise_needs:
# 高運動需求品種需要確認用戶能提供足夠運動
if ('high' in dimensions.activity_level or
'house' in dimensions.spatial_constraints):
compatibility += 0.2
else:
compatibility -= 0.2
# 品種護理需求是否與用戶能力匹配
grooming_needs = breed_info.get('grooming_needs', '')
if 'high' in grooming_needs:
if 'high' in dimensions.maintenance_level:
compatibility += 0.1
elif 'low' in dimensions.maintenance_level:
compatibility -= 0.1
return compatibility
def _calculate_size_bias_correction(self, breed_info: Dict,
dimensions: QueryDimensions) -> float:
"""Correct systematic bias toward larger breeds"""
breed_size = breed_info.get('size', '').lower()
# Default no bias correction
correction = 0.0
# Detect if user specified moderate/balanced preferences
if any(term in dimensions.activity_level for term in ['moderate', 'balanced', 'average']):
# Penalize extremes
if breed_size in ['giant', 'toy']:
correction = -0.1
elif breed_size in ['large']:
correction = -0.05
# Boost medium breeds for moderate requirements
if 'medium' in breed_size and 'balanced' in str(dimensions.activity_level):
correction = 0.1
return correction
def _calculate_confidence(self, dimensions: QueryDimensions) -> float:
"""計算推薦信心度"""
# 基於維度覆蓋率和信心分數計算
dimension_count = sum([
len(dimensions.spatial_constraints),
len(dimensions.activity_level),
len(dimensions.noise_preferences),
len(dimensions.size_preferences),
len(dimensions.family_context),
len(dimensions.maintenance_level),
len(dimensions.special_requirements)
])
# 基礎信心度
base_confidence = min(1.0, dimension_count * 0.15)
# 品種提及獎勵
breed_bonus = min(0.2, len(dimensions.breed_mentions) * 0.1)
# 整體信心分數
overall_confidence = dimensions.confidence_scores.get('overall', 0.5)
return min(1.0, base_confidence + breed_bonus + overall_confidence * 0.3)
def _generate_explanation(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions,
dimensional_scores: Dict[str, float]) -> Dict[str, Any]:
"""生成評分解釋"""
try:
explanation = {
'strengths': [],
'considerations': [],
'match_highlights': [],
'score_breakdown': dimensional_scores
}
breed_name = breed_info.get('display_name', '')
# 分析各維度表現
for dimension, score in dimensional_scores.items():
if score >= 0.8:
explanation['strengths'].append(self._get_strength_text(dimension, breed_info))
elif score <= 0.3:
explanation['considerations'].append(self._get_consideration_text(dimension, breed_info))
else:
explanation['match_highlights'].append(f"{dimension}: {score:.2f}")
return explanation
except Exception as e:
print(f"Error generating explanation: {str(e)}")
return {'strengths': [], 'considerations': [], 'match_highlights': []}
def _get_strength_text(self, dimension: str, breed_info: Dict[str, Any]) -> str:
"""Get strength description"""
breed_name = breed_info.get('display_name', '')
if dimension == 'activity_compatibility':
return f"{breed_name} has an activity level that matches your lifestyle very well"
elif dimension == 'noise_compatibility':
return f"{breed_name} has noise characteristics that fit your environment"
elif dimension == 'spatial_compatibility':
return f"{breed_name} is very suitable for your living space"
elif dimension == 'family_compatibility':
return f"{breed_name} performs well in a family environment"
elif dimension == 'maintenance_compatibility':
return f"{breed_name} has grooming needs that match your willingness to commit"
else:
return f"{breed_name} shows strong performance in {dimension}"
def _get_consideration_text(self, dimension: str, breed_info: Dict[str, Any]) -> str:
"""Get consideration description"""
breed_name = breed_info.get('display_name', '')
if dimension == 'activity_compatibility':
return f"{breed_name} may have exercise needs that differ from your lifestyle"
elif dimension == 'noise_compatibility':
return f"{breed_name} has noise characteristics that require special consideration"
elif dimension == 'maintenance_compatibility':
return f"{breed_name} has relatively high grooming requirements"
else:
return f"{breed_name} requires extra consideration in {dimension}"
def score_breed_candidates(candidate_breeds: Set[str],
dimensions: QueryDimensions,
sbert_model: Optional[SentenceTransformer] = None) -> List[BreedScore]:
"""
便利函數:為候選品種評分
Args:
candidate_breeds: 候選品種集合
dimensions: 查詢維度
sbert_model: 可選的SBERT模型
Returns:
List[BreedScore]: 評分結果列表
"""
scorer = MultiHeadScorer(sbert_model)
return scorer.score_breeds(candidate_breeds, dimensions)