File size: 31,894 Bytes
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
import numpy as np
import json
from typing import Dict, List, Tuple, Optional, Any, Set
from dataclasses import dataclass, field
from abc import ABC, abstractmethod
import traceback
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from query_understanding import QueryDimensions
from constraint_manager import FilterResult

@dataclass
class DimensionalScores:
    """多維度評分結果"""
    semantic_scores: Dict[str, float] = field(default_factory=dict)
    attribute_scores: Dict[str, float] = field(default_factory=dict)
    fused_scores: Dict[str, float] = field(default_factory=dict)
    bidirectional_scores: Dict[str, float] = field(default_factory=dict)
    confidence_weights: Dict[str, float] = field(default_factory=dict)

@dataclass
class BreedScore:
    """品種總體評分結果"""
    breed_name: str
    final_score: float
    dimensional_breakdown: Dict[str, float] = field(default_factory=dict)
    semantic_component: float = 0.0
    attribute_component: float = 0.0
    bidirectional_bonus: float = 0.0
    confidence_score: float = 1.0
    explanation: Dict[str, Any] = field(default_factory=dict)

class ScoringHead(ABC):
    """抽象評分頭基類"""

    @abstractmethod
    def score_dimension(self, breed_info: Dict[str, Any],
                       dimensions: QueryDimensions,
                       dimension_type: str) -> float:
        """為特定維度評分"""
        pass

class SemanticScoringHead(ScoringHead):
    """語義評分頭"""

    def __init__(self, sbert_model: Optional[SentenceTransformer] = None):
        self.sbert_model = sbert_model
        self.dimension_embeddings = {}
        if self.sbert_model:
            self._build_dimension_embeddings()

    def _build_dimension_embeddings(self):
        """建立維度模板嵌入"""
        dimension_templates = {
            'spatial_apartment': "small apartment living, limited space, no yard, urban environment",
            'spatial_house': "house with yard, outdoor space, suburban living, large property",
            'activity_low': "low energy, minimal exercise needs, calm lifestyle, indoor activities",
            'activity_moderate': "moderate exercise, daily walks, balanced activity level",
            'activity_high': "high energy, vigorous exercise, outdoor sports, active lifestyle",
            'noise_low': "quiet, rarely barks, peaceful, suitable for noise-sensitive environments",
            'noise_moderate': "moderate barking, occasional vocalizations, average noise level",
            'noise_high': "vocal, frequent barking, alert dog, comfortable with noise",
            'size_small': "small compact breed, easy to handle, portable size",
            'size_medium': "medium sized dog, balanced proportions, moderate size",
            'size_large': "large impressive dog, substantial presence, bigger breed",
            'family_children': "child-friendly, gentle with kids, family-oriented, safe around children",
            'family_elderly': "calm companion, gentle nature, suitable for seniors, low maintenance",
            'maintenance_low': "low grooming needs, minimal care requirements, easy maintenance",
            'maintenance_moderate': "regular grooming, moderate care needs, standard maintenance",
            'maintenance_high': "high grooming requirements, professional care, intensive maintenance"
        }

        for key, template in dimension_templates.items():
            if self.sbert_model:
                embedding = self.sbert_model.encode(template, convert_to_tensor=False)
                self.dimension_embeddings[key] = embedding

    def score_dimension(self, breed_info: Dict[str, Any],
                       dimensions: QueryDimensions,
                       dimension_type: str) -> float:
        """語義維度評分"""
        if not self.sbert_model or dimension_type not in self.dimension_embeddings:
            return 0.5  # 預設中性分數

        try:
            # 建立品種描述
            breed_description = self._create_breed_description(breed_info, dimension_type)

            # 生成嵌入
            breed_embedding = self.sbert_model.encode(breed_description, convert_to_tensor=False)
            dimension_embedding = self.dimension_embeddings[dimension_type]

            # 計算相似度
            similarity = cosine_similarity([breed_embedding], [dimension_embedding])[0][0]

            # 正規化到 0-1 範圍
            normalized_score = (similarity + 1) / 2  # 從 [-1,1] 轉換到 [0,1]

            return max(0.0, min(1.0, normalized_score))

        except Exception as e:
            print(f"Error in semantic scoring for {dimension_type}: {str(e)}")
            return 0.5

    def _create_breed_description(self, breed_info: Dict[str, Any],
                                dimension_type: str) -> str:
        """為特定維度創建品種描述"""
        breed_name = breed_info.get('display_name', breed_info.get('breed_name', ''))

        if dimension_type.startswith('spatial_'):
            size = breed_info.get('size', 'medium')
            exercise = breed_info.get('exercise_needs', 'moderate')
            return f"{breed_name} is a {size} dog with {exercise} exercise needs"

        elif dimension_type.startswith('activity_'):
            exercise = breed_info.get('exercise_needs', 'moderate')
            temperament = breed_info.get('temperament', '')
            return f"{breed_name} has {exercise} exercise requirements and {temperament} temperament"

        elif dimension_type.startswith('noise_'):
            noise_level = breed_info.get('noise_level', 'moderate')
            temperament = breed_info.get('temperament', '')
            return f"{breed_name} has {noise_level} noise level and {temperament} nature"

        elif dimension_type.startswith('size_'):
            size = breed_info.get('size', 'medium')
            return f"{breed_name} is a {size} sized dog breed"

        elif dimension_type.startswith('family_'):
            children = breed_info.get('good_with_children', 'Yes')
            temperament = breed_info.get('temperament', '')
            return f"{breed_name} is {children} with children and has {temperament} temperament"

        elif dimension_type.startswith('maintenance_'):
            grooming = breed_info.get('grooming_needs', 'moderate')
            care_level = breed_info.get('care_level', 'moderate')
            return f"{breed_name} requires {grooming} grooming and {care_level} care level"

        return f"{breed_name} is a dog breed with various characteristics"

class AttributeScoringHead(ScoringHead):
    """屬性評分頭"""

    def __init__(self):
        self.scoring_matrices = self._initialize_scoring_matrices()

    def _initialize_scoring_matrices(self) -> Dict[str, Dict[str, float]]:
        """初始化評分矩陣"""
        return {
            'spatial_scoring': {
                # (user_preference, breed_attribute) -> score
                ('apartment', 'small'): 1.0,
                ('apartment', 'medium'): 0.6,
                ('apartment', 'large'): 0.2,
                ('apartment', 'giant'): 0.0,
                ('house', 'small'): 0.7,
                ('house', 'medium'): 0.9,
                ('house', 'large'): 1.0,
                ('house', 'giant'): 1.0,
            },
            'activity_scoring': {
                ('low', 'low'): 1.0,
                ('low', 'moderate'): 0.7,
                ('low', 'high'): 0.2,
                ('low', 'very high'): 0.0,
                ('moderate', 'low'): 0.8,
                ('moderate', 'moderate'): 1.0,
                ('moderate', 'high'): 0.8,
                ('high', 'moderate'): 0.7,
                ('high', 'high'): 1.0,
                ('high', 'very high'): 1.0,
            },
            'noise_scoring': {
                ('low', 'low'): 1.0,
                ('low', 'moderate'): 0.6,
                ('low', 'high'): 0.1,
                ('moderate', 'low'): 0.8,
                ('moderate', 'moderate'): 1.0,
                ('moderate', 'high'): 0.7,
                ('high', 'low'): 0.7,
                ('high', 'moderate'): 0.9,
                ('high', 'high'): 1.0,
            },
            'size_scoring': {
                ('small', 'small'): 1.0,
                ('small', 'medium'): 0.5,
                ('small', 'large'): 0.2,
                ('medium', 'small'): 0.6,
                ('medium', 'medium'): 1.0,
                ('medium', 'large'): 0.6,
                ('large', 'medium'): 0.7,
                ('large', 'large'): 1.0,
                ('large', 'giant'): 0.9,
            },
            'maintenance_scoring': {
                ('low', 'low'): 1.0,
                ('low', 'moderate'): 0.6,
                ('low', 'high'): 0.2,
                ('moderate', 'low'): 0.8,
                ('moderate', 'moderate'): 1.0,
                ('moderate', 'high'): 0.7,
                ('high', 'low'): 0.6,
                ('high', 'moderate'): 0.8,
                ('high', 'high'): 1.0,
            }
        }

    def score_dimension(self, breed_info: Dict[str, Any],
                       dimensions: QueryDimensions,
                       dimension_type: str) -> float:
        """屬性維度評分"""
        try:
            if dimension_type.startswith('spatial_'):
                return self._score_spatial_compatibility(breed_info, dimensions)
            elif dimension_type.startswith('activity_'):
                return self._score_activity_compatibility(breed_info, dimensions)
            elif dimension_type.startswith('noise_'):
                return self._score_noise_compatibility(breed_info, dimensions)
            elif dimension_type.startswith('size_'):
                return self._score_size_compatibility(breed_info, dimensions)
            elif dimension_type.startswith('family_'):
                return self._score_family_compatibility(breed_info, dimensions)
            elif dimension_type.startswith('maintenance_'):
                return self._score_maintenance_compatibility(breed_info, dimensions)
            else:
                return 0.5  # 預設中性分數

        except Exception as e:
            print(f"Error in attribute scoring for {dimension_type}: {str(e)}")
            return 0.5

    def _score_spatial_compatibility(self, breed_info: Dict[str, Any],
                                   dimensions: QueryDimensions) -> float:
        """空間相容性評分"""
        if not dimensions.spatial_constraints:
            return 0.5

        breed_size = breed_info.get('size', 'medium').lower()
        total_score = 0.0

        for spatial_constraint in dimensions.spatial_constraints:
            key = (spatial_constraint, breed_size)
            score = self.scoring_matrices['spatial_scoring'].get(key, 0.5)
            total_score += score

        return total_score / len(dimensions.spatial_constraints)

    def _score_activity_compatibility(self, breed_info: Dict[str, Any],
                                    dimensions: QueryDimensions) -> float:
        """活動相容性評分"""
        if not dimensions.activity_level:
            return 0.5

        breed_exercise = breed_info.get('exercise_needs', 'moderate').lower()
        # 清理品種運動需求字串
        if 'very high' in breed_exercise:
            breed_exercise = 'very high'
        elif 'high' in breed_exercise:
            breed_exercise = 'high'
        elif 'low' in breed_exercise:
            breed_exercise = 'low'
        else:
            breed_exercise = 'moderate'

        total_score = 0.0
        for activity_level in dimensions.activity_level:
            key = (activity_level, breed_exercise)
            score = self.scoring_matrices['activity_scoring'].get(key, 0.5)
            total_score += score

        return total_score / len(dimensions.activity_level)

    def _score_noise_compatibility(self, breed_info: Dict[str, Any],
                                 dimensions: QueryDimensions) -> float:
        """噪音相容性評分"""
        if not dimensions.noise_preferences:
            return 0.5

        breed_noise = breed_info.get('noise_level', 'moderate').lower()
        total_score = 0.0

        for noise_pref in dimensions.noise_preferences:
            key = (noise_pref, breed_noise)
            score = self.scoring_matrices['noise_scoring'].get(key, 0.5)
            total_score += score

        return total_score / len(dimensions.noise_preferences)

    def _score_size_compatibility(self, breed_info: Dict[str, Any],
                                dimensions: QueryDimensions) -> float:
        """尺寸相容性評分"""
        if not dimensions.size_preferences:
            return 0.5

        breed_size = breed_info.get('size', 'medium').lower()
        total_score = 0.0

        for size_pref in dimensions.size_preferences:
            key = (size_pref, breed_size)
            score = self.scoring_matrices['size_scoring'].get(key, 0.5)
            total_score += score

        return total_score / len(dimensions.size_preferences)

    def _score_family_compatibility(self, breed_info: Dict[str, Any],
                                  dimensions: QueryDimensions) -> float:
        """家庭相容性評分"""
        if not dimensions.family_context:
            return 0.5

        good_with_children = breed_info.get('good_with_children', 'Yes')
        temperament = breed_info.get('temperament', '').lower()

        total_score = 0.0
        score_count = 0

        for family_context in dimensions.family_context:
            if family_context == 'children':
                if good_with_children == 'Yes':
                    total_score += 1.0
                elif good_with_children == 'No':
                    total_score += 0.1
                else:
                    total_score += 0.6
                score_count += 1
            elif family_context == 'elderly':
                # 溫和、冷靜的品種適合老年人
                if any(trait in temperament for trait in ['gentle', 'calm', 'docile']):
                    total_score += 1.0
                elif any(trait in temperament for trait in ['energetic', 'hyperactive']):
                    total_score += 0.3
                else:
                    total_score += 0.7
                score_count += 1
            elif family_context == 'single':
                # 大多數品種都適合單身人士
                total_score += 0.8
                score_count += 1

        return total_score / max(1, score_count)

    def _score_maintenance_compatibility(self, breed_info: Dict[str, Any],
                                       dimensions: QueryDimensions) -> float:
        """維護相容性評分"""
        if not dimensions.maintenance_level:
            return 0.5

        breed_grooming = breed_info.get('grooming_needs', 'moderate').lower()
        total_score = 0.0

        for maintenance_level in dimensions.maintenance_level:
            key = (maintenance_level, breed_grooming)
            score = self.scoring_matrices['maintenance_scoring'].get(key, 0.5)
            total_score += score

        return total_score / len(dimensions.maintenance_level)

class MultiHeadScorer:
    """
    多頭評分系統
    結合語義和屬性評分,提供雙向相容性評估
    """

    def __init__(self, sbert_model: Optional[SentenceTransformer] = None):
        self.sbert_model = sbert_model
        self.semantic_head = SemanticScoringHead(sbert_model)
        self.attribute_head = AttributeScoringHead()
        self.dimension_weights = self._initialize_dimension_weights()
        self.head_fusion_weights = self._initialize_head_fusion_weights()

    def _initialize_dimension_weights(self) -> Dict[str, float]:
        """初始化維度權重"""
        return {
            'activity_compatibility': 0.35,    # 最高優先級:生活方式匹配
            'noise_compatibility': 0.25,       # 關鍵:居住和諧
            'spatial_compatibility': 0.15,     # 基本:物理約束
            'family_compatibility': 0.10,      # 重要:社交相容性
            'maintenance_compatibility': 0.10,  # 實際:持續護理評估
            'size_compatibility': 0.05         # 基本:偏好匹配
        }

    def _initialize_head_fusion_weights(self) -> Dict[str, Dict[str, float]]:
        """初始化頭融合權重"""
        return {
            'activity_compatibility': {'semantic': 0.4, 'attribute': 0.6},
            'noise_compatibility': {'semantic': 0.3, 'attribute': 0.7},
            'spatial_compatibility': {'semantic': 0.3, 'attribute': 0.7},
            'family_compatibility': {'semantic': 0.5, 'attribute': 0.5},
            'maintenance_compatibility': {'semantic': 0.4, 'attribute': 0.6},
            'size_compatibility': {'semantic': 0.2, 'attribute': 0.8}
        }

    def score_breeds(self, candidate_breeds: Set[str],
                    dimensions: QueryDimensions) -> List[BreedScore]:
        """
        為候選品種評分

        Args:
            candidate_breeds: 通過約束篩選的候選品種
            dimensions: 查詢維度

        Returns:
            List[BreedScore]: 品種評分結果列表
        """
        try:
            breed_scores = []

            # 為每個品種計算分數
            for breed in candidate_breeds:
                breed_info = self._get_breed_info(breed)
                score_result = self._score_single_breed(breed_info, dimensions)
                breed_scores.append(score_result)

            # 按最終分數排序
            breed_scores.sort(key=lambda x: x.final_score, reverse=True)

            return breed_scores

        except Exception as e:
            print(f"Error scoring breeds: {str(e)}")
            print(traceback.format_exc())
            return []

    def _get_breed_info(self, breed: str) -> Dict[str, Any]:
        """獲取品種資訊"""
        try:
            # 基本品種資訊
            breed_info = get_dog_description(breed) or {}

            # 健康資訊
            health_info = breed_health_info.get(breed, {})

            # 噪音資訊
            noise_info = breed_noise_info.get(breed, {})

            # 整合資訊
            return {
                'breed_name': breed,
                'display_name': breed.replace('_', ' '),
                'size': breed_info.get('Size', '').lower(),
                'exercise_needs': breed_info.get('Exercise Needs', '').lower(),
                'grooming_needs': breed_info.get('Grooming Needs', '').lower(),
                'temperament': breed_info.get('Temperament', '').lower(),
                'good_with_children': breed_info.get('Good with Children', 'Yes'),
                'care_level': breed_info.get('Care Level', '').lower(),
                'lifespan': breed_info.get('Lifespan', '10-12 years'),
                'noise_level': noise_info.get('noise_level', 'moderate').lower(),
                'description': breed_info.get('Description', ''),
                'raw_breed_info': breed_info,
                'raw_health_info': health_info,
                'raw_noise_info': noise_info
            }
        except Exception as e:
            print(f"Error getting breed info for {breed}: {str(e)}")
            return {
                'breed_name': breed,
                'display_name': breed.replace('_', ' ')
            }

    def _score_single_breed(self, breed_info: Dict[str, Any],
                          dimensions: QueryDimensions) -> BreedScore:
        """為單一品種評分"""
        try:
            dimensional_scores = {}
            semantic_total = 0.0
            attribute_total = 0.0

            # 動態權重分配(基於用戶表達的維度)
            active_dimensions = self._get_active_dimensions(dimensions)
            adjusted_weights = self._adjust_dimension_weights(active_dimensions)

            # 為每個活躍維度評分
            for dimension, weight in adjusted_weights.items():
                # 語義評分
                semantic_score = self.semantic_head.score_dimension(
                    breed_info, dimensions, dimension
                )

                # 屬性評分
                attribute_score = self.attribute_head.score_dimension(
                    breed_info, dimensions, dimension
                )

                # 頭融合
                fusion_weights = self.head_fusion_weights.get(
                    dimension, {'semantic': 0.5, 'attribute': 0.5}
                )

                fused_score = (semantic_score * fusion_weights['semantic'] +
                              attribute_score * fusion_weights['attribute'])

                dimensional_scores[dimension] = fused_score
                semantic_total += semantic_score * weight
                attribute_total += attribute_score * weight

            # 雙向相容性評估
            bidirectional_bonus = self._calculate_bidirectional_bonus(
                breed_info, dimensions
            )

            # Apply size bias correction
            bias_correction = self._calculate_size_bias_correction(breed_info, dimensions)

            # 計算最終分數
            base_score = sum(score * adjusted_weights[dim]
                           for dim, score in dimensional_scores.items())

            # Apply corrections
            final_score = max(0.0, min(1.0, base_score + bidirectional_bonus + bias_correction))

            # 信心度評估
            confidence_score = self._calculate_confidence(dimensions)

            return BreedScore(
                breed_name=breed_info.get('display_name', breed_info['breed_name']),
                final_score=final_score,
                dimensional_breakdown=dimensional_scores,
                semantic_component=semantic_total,
                attribute_component=attribute_total,
                bidirectional_bonus=bidirectional_bonus,
                confidence_score=confidence_score,
                explanation=self._generate_explanation(breed_info, dimensions, dimensional_scores)
            )

        except Exception as e:
            print(f"Error scoring breed {breed_info.get('breed_name', 'unknown')}: {str(e)}")
            return BreedScore(
                breed_name=breed_info.get('display_name', breed_info.get('breed_name', 'Unknown')),
                final_score=0.5,
                confidence_score=0.0
            )

    def _get_active_dimensions(self, dimensions: QueryDimensions) -> Set[str]:
        """獲取活躍的維度"""
        active = set()

        if dimensions.spatial_constraints:
            active.add('spatial_compatibility')
        if dimensions.activity_level:
            active.add('activity_compatibility')
        if dimensions.noise_preferences:
            active.add('noise_compatibility')
        if dimensions.size_preferences:
            active.add('size_compatibility')
        if dimensions.family_context:
            active.add('family_compatibility')
        if dimensions.maintenance_level:
            active.add('maintenance_compatibility')

        return active

    def _adjust_dimension_weights(self, active_dimensions: Set[str]) -> Dict[str, float]:
        """調整維度權重"""
        if not active_dimensions:
            return self.dimension_weights

        # 只為活躍維度分配權重
        active_weights = {dim: weight for dim, weight in self.dimension_weights.items()
                         if dim in active_dimensions}

        # 正規化權重總和為 1.0
        total_weight = sum(active_weights.values())
        if total_weight > 0:
            active_weights = {dim: weight / total_weight
                            for dim, weight in active_weights.items()}

        return active_weights

    def _calculate_bidirectional_bonus(self, breed_info: Dict[str, Any],
                                     dimensions: QueryDimensions) -> float:
        """計算雙向相容性獎勵"""
        try:
            bonus = 0.0

            # 正向相容性:品種滿足用戶需求
            forward_compatibility = self._assess_forward_compatibility(breed_info, dimensions)

            # 反向相容性:用戶生活方式適合品種需求
            reverse_compatibility = self._assess_reverse_compatibility(breed_info, dimensions)

            # 雙向獎勵(較為保守)
            bonus = min(0.1, (forward_compatibility + reverse_compatibility) * 0.05)

            return bonus

        except Exception as e:
            print(f"Error calculating bidirectional bonus: {str(e)}")
            return 0.0

    def _assess_forward_compatibility(self, breed_info: Dict[str, Any],
                                    dimensions: QueryDimensions) -> float:
        """評估正向相容性"""
        compatibility = 0.0

        # 空間需求匹配
        if 'apartment' in dimensions.spatial_constraints:
            size = breed_info.get('size', '')
            if 'small' in size:
                compatibility += 0.3
            elif 'medium' in size:
                compatibility += 0.1

        # 活動需求匹配
        if 'low' in dimensions.activity_level:
            exercise = breed_info.get('exercise_needs', '')
            if 'low' in exercise:
                compatibility += 0.3
            elif 'moderate' in exercise:
                compatibility += 0.1

        return compatibility

    def _assess_reverse_compatibility(self, breed_info: Dict[str, Any],
                                    dimensions: QueryDimensions) -> float:
        """評估反向相容性"""
        compatibility = 0.0

        # 品種是否能在用戶環境中茁壯成長
        exercise_needs = breed_info.get('exercise_needs', '')

        if 'high' in exercise_needs:
            # 高運動需求品種需要確認用戶能提供足夠運動
            if ('high' in dimensions.activity_level or
                'house' in dimensions.spatial_constraints):
                compatibility += 0.2
            else:
                compatibility -= 0.2

        # 品種護理需求是否與用戶能力匹配
        grooming_needs = breed_info.get('grooming_needs', '')
        if 'high' in grooming_needs:
            if 'high' in dimensions.maintenance_level:
                compatibility += 0.1
            elif 'low' in dimensions.maintenance_level:
                compatibility -= 0.1

        return compatibility

    def _calculate_size_bias_correction(self, breed_info: Dict,
                                       dimensions: QueryDimensions) -> float:
        """Correct systematic bias toward larger breeds"""
        breed_size = breed_info.get('size', '').lower()

        # Default no bias correction
        correction = 0.0

        # Detect if user specified moderate/balanced preferences
        if any(term in dimensions.activity_level for term in ['moderate', 'balanced', 'average']):
            # Penalize extremes
            if breed_size in ['giant', 'toy']:
                correction = -0.1
            elif breed_size in ['large']:
                correction = -0.05

        # Boost medium breeds for moderate requirements
        if 'medium' in breed_size and 'balanced' in str(dimensions.activity_level):
            correction = 0.1

        return correction

    def _calculate_confidence(self, dimensions: QueryDimensions) -> float:
        """計算推薦信心度"""
        # 基於維度覆蓋率和信心分數計算
        dimension_count = sum([
            len(dimensions.spatial_constraints),
            len(dimensions.activity_level),
            len(dimensions.noise_preferences),
            len(dimensions.size_preferences),
            len(dimensions.family_context),
            len(dimensions.maintenance_level),
            len(dimensions.special_requirements)
        ])

        # 基礎信心度
        base_confidence = min(1.0, dimension_count * 0.15)

        # 品種提及獎勵
        breed_bonus = min(0.2, len(dimensions.breed_mentions) * 0.1)

        # 整體信心分數
        overall_confidence = dimensions.confidence_scores.get('overall', 0.5)

        return min(1.0, base_confidence + breed_bonus + overall_confidence * 0.3)

    def _generate_explanation(self, breed_info: Dict[str, Any],
                            dimensions: QueryDimensions,
                            dimensional_scores: Dict[str, float]) -> Dict[str, Any]:
        """生成評分解釋"""
        try:
            explanation = {
                'strengths': [],
                'considerations': [],
                'match_highlights': [],
                'score_breakdown': dimensional_scores
            }

            breed_name = breed_info.get('display_name', '')

            # 分析各維度表現
            for dimension, score in dimensional_scores.items():
                if score >= 0.8:
                    explanation['strengths'].append(self._get_strength_text(dimension, breed_info))
                elif score <= 0.3:
                    explanation['considerations'].append(self._get_consideration_text(dimension, breed_info))
                else:
                    explanation['match_highlights'].append(f"{dimension}: {score:.2f}")

            return explanation

        except Exception as e:
            print(f"Error generating explanation: {str(e)}")
            return {'strengths': [], 'considerations': [], 'match_highlights': []}

    def _get_strength_text(self, dimension: str, breed_info: Dict[str, Any]) -> str:
        """Get strength description"""
        breed_name = breed_info.get('display_name', '')

        if dimension == 'activity_compatibility':
            return f"{breed_name} has an activity level that matches your lifestyle very well"
        elif dimension == 'noise_compatibility':
            return f"{breed_name} has noise characteristics that fit your environment"
        elif dimension == 'spatial_compatibility':
            return f"{breed_name} is very suitable for your living space"
        elif dimension == 'family_compatibility':
            return f"{breed_name} performs well in a family environment"
        elif dimension == 'maintenance_compatibility':
            return f"{breed_name} has grooming needs that match your willingness to commit"
        else:
            return f"{breed_name} shows strong performance in {dimension}"

    def _get_consideration_text(self, dimension: str, breed_info: Dict[str, Any]) -> str:
        """Get consideration description"""
        breed_name = breed_info.get('display_name', '')

        if dimension == 'activity_compatibility':
            return f"{breed_name} may have exercise needs that differ from your lifestyle"
        elif dimension == 'noise_compatibility':
            return f"{breed_name} has noise characteristics that require special consideration"
        elif dimension == 'maintenance_compatibility':
            return f"{breed_name} has relatively high grooming requirements"
        else:
            return f"{breed_name} requires extra consideration in {dimension}"


def score_breed_candidates(candidate_breeds: Set[str],
                         dimensions: QueryDimensions,
                         sbert_model: Optional[SentenceTransformer] = None) -> List[BreedScore]:
    """
    便利函數:為候選品種評分

    Args:
        candidate_breeds: 候選品種集合
        dimensions: 查詢維度
        sbert_model: 可選的SBERT模型

    Returns:
        List[BreedScore]: 評分結果列表
    """
    scorer = MultiHeadScorer(sbert_model)
    return scorer.score_breeds(candidate_breeds, dimensions)