Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,894 Bytes
1e4c9bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
import numpy as np
import json
from typing import Dict, List, Tuple, Optional, Any, Set
from dataclasses import dataclass, field
from abc import ABC, abstractmethod
import traceback
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from query_understanding import QueryDimensions
from constraint_manager import FilterResult
@dataclass
class DimensionalScores:
"""多維度評分結果"""
semantic_scores: Dict[str, float] = field(default_factory=dict)
attribute_scores: Dict[str, float] = field(default_factory=dict)
fused_scores: Dict[str, float] = field(default_factory=dict)
bidirectional_scores: Dict[str, float] = field(default_factory=dict)
confidence_weights: Dict[str, float] = field(default_factory=dict)
@dataclass
class BreedScore:
"""品種總體評分結果"""
breed_name: str
final_score: float
dimensional_breakdown: Dict[str, float] = field(default_factory=dict)
semantic_component: float = 0.0
attribute_component: float = 0.0
bidirectional_bonus: float = 0.0
confidence_score: float = 1.0
explanation: Dict[str, Any] = field(default_factory=dict)
class ScoringHead(ABC):
"""抽象評分頭基類"""
@abstractmethod
def score_dimension(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions,
dimension_type: str) -> float:
"""為特定維度評分"""
pass
class SemanticScoringHead(ScoringHead):
"""語義評分頭"""
def __init__(self, sbert_model: Optional[SentenceTransformer] = None):
self.sbert_model = sbert_model
self.dimension_embeddings = {}
if self.sbert_model:
self._build_dimension_embeddings()
def _build_dimension_embeddings(self):
"""建立維度模板嵌入"""
dimension_templates = {
'spatial_apartment': "small apartment living, limited space, no yard, urban environment",
'spatial_house': "house with yard, outdoor space, suburban living, large property",
'activity_low': "low energy, minimal exercise needs, calm lifestyle, indoor activities",
'activity_moderate': "moderate exercise, daily walks, balanced activity level",
'activity_high': "high energy, vigorous exercise, outdoor sports, active lifestyle",
'noise_low': "quiet, rarely barks, peaceful, suitable for noise-sensitive environments",
'noise_moderate': "moderate barking, occasional vocalizations, average noise level",
'noise_high': "vocal, frequent barking, alert dog, comfortable with noise",
'size_small': "small compact breed, easy to handle, portable size",
'size_medium': "medium sized dog, balanced proportions, moderate size",
'size_large': "large impressive dog, substantial presence, bigger breed",
'family_children': "child-friendly, gentle with kids, family-oriented, safe around children",
'family_elderly': "calm companion, gentle nature, suitable for seniors, low maintenance",
'maintenance_low': "low grooming needs, minimal care requirements, easy maintenance",
'maintenance_moderate': "regular grooming, moderate care needs, standard maintenance",
'maintenance_high': "high grooming requirements, professional care, intensive maintenance"
}
for key, template in dimension_templates.items():
if self.sbert_model:
embedding = self.sbert_model.encode(template, convert_to_tensor=False)
self.dimension_embeddings[key] = embedding
def score_dimension(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions,
dimension_type: str) -> float:
"""語義維度評分"""
if not self.sbert_model or dimension_type not in self.dimension_embeddings:
return 0.5 # 預設中性分數
try:
# 建立品種描述
breed_description = self._create_breed_description(breed_info, dimension_type)
# 生成嵌入
breed_embedding = self.sbert_model.encode(breed_description, convert_to_tensor=False)
dimension_embedding = self.dimension_embeddings[dimension_type]
# 計算相似度
similarity = cosine_similarity([breed_embedding], [dimension_embedding])[0][0]
# 正規化到 0-1 範圍
normalized_score = (similarity + 1) / 2 # 從 [-1,1] 轉換到 [0,1]
return max(0.0, min(1.0, normalized_score))
except Exception as e:
print(f"Error in semantic scoring for {dimension_type}: {str(e)}")
return 0.5
def _create_breed_description(self, breed_info: Dict[str, Any],
dimension_type: str) -> str:
"""為特定維度創建品種描述"""
breed_name = breed_info.get('display_name', breed_info.get('breed_name', ''))
if dimension_type.startswith('spatial_'):
size = breed_info.get('size', 'medium')
exercise = breed_info.get('exercise_needs', 'moderate')
return f"{breed_name} is a {size} dog with {exercise} exercise needs"
elif dimension_type.startswith('activity_'):
exercise = breed_info.get('exercise_needs', 'moderate')
temperament = breed_info.get('temperament', '')
return f"{breed_name} has {exercise} exercise requirements and {temperament} temperament"
elif dimension_type.startswith('noise_'):
noise_level = breed_info.get('noise_level', 'moderate')
temperament = breed_info.get('temperament', '')
return f"{breed_name} has {noise_level} noise level and {temperament} nature"
elif dimension_type.startswith('size_'):
size = breed_info.get('size', 'medium')
return f"{breed_name} is a {size} sized dog breed"
elif dimension_type.startswith('family_'):
children = breed_info.get('good_with_children', 'Yes')
temperament = breed_info.get('temperament', '')
return f"{breed_name} is {children} with children and has {temperament} temperament"
elif dimension_type.startswith('maintenance_'):
grooming = breed_info.get('grooming_needs', 'moderate')
care_level = breed_info.get('care_level', 'moderate')
return f"{breed_name} requires {grooming} grooming and {care_level} care level"
return f"{breed_name} is a dog breed with various characteristics"
class AttributeScoringHead(ScoringHead):
"""屬性評分頭"""
def __init__(self):
self.scoring_matrices = self._initialize_scoring_matrices()
def _initialize_scoring_matrices(self) -> Dict[str, Dict[str, float]]:
"""初始化評分矩陣"""
return {
'spatial_scoring': {
# (user_preference, breed_attribute) -> score
('apartment', 'small'): 1.0,
('apartment', 'medium'): 0.6,
('apartment', 'large'): 0.2,
('apartment', 'giant'): 0.0,
('house', 'small'): 0.7,
('house', 'medium'): 0.9,
('house', 'large'): 1.0,
('house', 'giant'): 1.0,
},
'activity_scoring': {
('low', 'low'): 1.0,
('low', 'moderate'): 0.7,
('low', 'high'): 0.2,
('low', 'very high'): 0.0,
('moderate', 'low'): 0.8,
('moderate', 'moderate'): 1.0,
('moderate', 'high'): 0.8,
('high', 'moderate'): 0.7,
('high', 'high'): 1.0,
('high', 'very high'): 1.0,
},
'noise_scoring': {
('low', 'low'): 1.0,
('low', 'moderate'): 0.6,
('low', 'high'): 0.1,
('moderate', 'low'): 0.8,
('moderate', 'moderate'): 1.0,
('moderate', 'high'): 0.7,
('high', 'low'): 0.7,
('high', 'moderate'): 0.9,
('high', 'high'): 1.0,
},
'size_scoring': {
('small', 'small'): 1.0,
('small', 'medium'): 0.5,
('small', 'large'): 0.2,
('medium', 'small'): 0.6,
('medium', 'medium'): 1.0,
('medium', 'large'): 0.6,
('large', 'medium'): 0.7,
('large', 'large'): 1.0,
('large', 'giant'): 0.9,
},
'maintenance_scoring': {
('low', 'low'): 1.0,
('low', 'moderate'): 0.6,
('low', 'high'): 0.2,
('moderate', 'low'): 0.8,
('moderate', 'moderate'): 1.0,
('moderate', 'high'): 0.7,
('high', 'low'): 0.6,
('high', 'moderate'): 0.8,
('high', 'high'): 1.0,
}
}
def score_dimension(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions,
dimension_type: str) -> float:
"""屬性維度評分"""
try:
if dimension_type.startswith('spatial_'):
return self._score_spatial_compatibility(breed_info, dimensions)
elif dimension_type.startswith('activity_'):
return self._score_activity_compatibility(breed_info, dimensions)
elif dimension_type.startswith('noise_'):
return self._score_noise_compatibility(breed_info, dimensions)
elif dimension_type.startswith('size_'):
return self._score_size_compatibility(breed_info, dimensions)
elif dimension_type.startswith('family_'):
return self._score_family_compatibility(breed_info, dimensions)
elif dimension_type.startswith('maintenance_'):
return self._score_maintenance_compatibility(breed_info, dimensions)
else:
return 0.5 # 預設中性分數
except Exception as e:
print(f"Error in attribute scoring for {dimension_type}: {str(e)}")
return 0.5
def _score_spatial_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""空間相容性評分"""
if not dimensions.spatial_constraints:
return 0.5
breed_size = breed_info.get('size', 'medium').lower()
total_score = 0.0
for spatial_constraint in dimensions.spatial_constraints:
key = (spatial_constraint, breed_size)
score = self.scoring_matrices['spatial_scoring'].get(key, 0.5)
total_score += score
return total_score / len(dimensions.spatial_constraints)
def _score_activity_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""活動相容性評分"""
if not dimensions.activity_level:
return 0.5
breed_exercise = breed_info.get('exercise_needs', 'moderate').lower()
# 清理品種運動需求字串
if 'very high' in breed_exercise:
breed_exercise = 'very high'
elif 'high' in breed_exercise:
breed_exercise = 'high'
elif 'low' in breed_exercise:
breed_exercise = 'low'
else:
breed_exercise = 'moderate'
total_score = 0.0
for activity_level in dimensions.activity_level:
key = (activity_level, breed_exercise)
score = self.scoring_matrices['activity_scoring'].get(key, 0.5)
total_score += score
return total_score / len(dimensions.activity_level)
def _score_noise_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""噪音相容性評分"""
if not dimensions.noise_preferences:
return 0.5
breed_noise = breed_info.get('noise_level', 'moderate').lower()
total_score = 0.0
for noise_pref in dimensions.noise_preferences:
key = (noise_pref, breed_noise)
score = self.scoring_matrices['noise_scoring'].get(key, 0.5)
total_score += score
return total_score / len(dimensions.noise_preferences)
def _score_size_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""尺寸相容性評分"""
if not dimensions.size_preferences:
return 0.5
breed_size = breed_info.get('size', 'medium').lower()
total_score = 0.0
for size_pref in dimensions.size_preferences:
key = (size_pref, breed_size)
score = self.scoring_matrices['size_scoring'].get(key, 0.5)
total_score += score
return total_score / len(dimensions.size_preferences)
def _score_family_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""家庭相容性評分"""
if not dimensions.family_context:
return 0.5
good_with_children = breed_info.get('good_with_children', 'Yes')
temperament = breed_info.get('temperament', '').lower()
total_score = 0.0
score_count = 0
for family_context in dimensions.family_context:
if family_context == 'children':
if good_with_children == 'Yes':
total_score += 1.0
elif good_with_children == 'No':
total_score += 0.1
else:
total_score += 0.6
score_count += 1
elif family_context == 'elderly':
# 溫和、冷靜的品種適合老年人
if any(trait in temperament for trait in ['gentle', 'calm', 'docile']):
total_score += 1.0
elif any(trait in temperament for trait in ['energetic', 'hyperactive']):
total_score += 0.3
else:
total_score += 0.7
score_count += 1
elif family_context == 'single':
# 大多數品種都適合單身人士
total_score += 0.8
score_count += 1
return total_score / max(1, score_count)
def _score_maintenance_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""維護相容性評分"""
if not dimensions.maintenance_level:
return 0.5
breed_grooming = breed_info.get('grooming_needs', 'moderate').lower()
total_score = 0.0
for maintenance_level in dimensions.maintenance_level:
key = (maintenance_level, breed_grooming)
score = self.scoring_matrices['maintenance_scoring'].get(key, 0.5)
total_score += score
return total_score / len(dimensions.maintenance_level)
class MultiHeadScorer:
"""
多頭評分系統
結合語義和屬性評分,提供雙向相容性評估
"""
def __init__(self, sbert_model: Optional[SentenceTransformer] = None):
self.sbert_model = sbert_model
self.semantic_head = SemanticScoringHead(sbert_model)
self.attribute_head = AttributeScoringHead()
self.dimension_weights = self._initialize_dimension_weights()
self.head_fusion_weights = self._initialize_head_fusion_weights()
def _initialize_dimension_weights(self) -> Dict[str, float]:
"""初始化維度權重"""
return {
'activity_compatibility': 0.35, # 最高優先級:生活方式匹配
'noise_compatibility': 0.25, # 關鍵:居住和諧
'spatial_compatibility': 0.15, # 基本:物理約束
'family_compatibility': 0.10, # 重要:社交相容性
'maintenance_compatibility': 0.10, # 實際:持續護理評估
'size_compatibility': 0.05 # 基本:偏好匹配
}
def _initialize_head_fusion_weights(self) -> Dict[str, Dict[str, float]]:
"""初始化頭融合權重"""
return {
'activity_compatibility': {'semantic': 0.4, 'attribute': 0.6},
'noise_compatibility': {'semantic': 0.3, 'attribute': 0.7},
'spatial_compatibility': {'semantic': 0.3, 'attribute': 0.7},
'family_compatibility': {'semantic': 0.5, 'attribute': 0.5},
'maintenance_compatibility': {'semantic': 0.4, 'attribute': 0.6},
'size_compatibility': {'semantic': 0.2, 'attribute': 0.8}
}
def score_breeds(self, candidate_breeds: Set[str],
dimensions: QueryDimensions) -> List[BreedScore]:
"""
為候選品種評分
Args:
candidate_breeds: 通過約束篩選的候選品種
dimensions: 查詢維度
Returns:
List[BreedScore]: 品種評分結果列表
"""
try:
breed_scores = []
# 為每個品種計算分數
for breed in candidate_breeds:
breed_info = self._get_breed_info(breed)
score_result = self._score_single_breed(breed_info, dimensions)
breed_scores.append(score_result)
# 按最終分數排序
breed_scores.sort(key=lambda x: x.final_score, reverse=True)
return breed_scores
except Exception as e:
print(f"Error scoring breeds: {str(e)}")
print(traceback.format_exc())
return []
def _get_breed_info(self, breed: str) -> Dict[str, Any]:
"""獲取品種資訊"""
try:
# 基本品種資訊
breed_info = get_dog_description(breed) or {}
# 健康資訊
health_info = breed_health_info.get(breed, {})
# 噪音資訊
noise_info = breed_noise_info.get(breed, {})
# 整合資訊
return {
'breed_name': breed,
'display_name': breed.replace('_', ' '),
'size': breed_info.get('Size', '').lower(),
'exercise_needs': breed_info.get('Exercise Needs', '').lower(),
'grooming_needs': breed_info.get('Grooming Needs', '').lower(),
'temperament': breed_info.get('Temperament', '').lower(),
'good_with_children': breed_info.get('Good with Children', 'Yes'),
'care_level': breed_info.get('Care Level', '').lower(),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'noise_level': noise_info.get('noise_level', 'moderate').lower(),
'description': breed_info.get('Description', ''),
'raw_breed_info': breed_info,
'raw_health_info': health_info,
'raw_noise_info': noise_info
}
except Exception as e:
print(f"Error getting breed info for {breed}: {str(e)}")
return {
'breed_name': breed,
'display_name': breed.replace('_', ' ')
}
def _score_single_breed(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> BreedScore:
"""為單一品種評分"""
try:
dimensional_scores = {}
semantic_total = 0.0
attribute_total = 0.0
# 動態權重分配(基於用戶表達的維度)
active_dimensions = self._get_active_dimensions(dimensions)
adjusted_weights = self._adjust_dimension_weights(active_dimensions)
# 為每個活躍維度評分
for dimension, weight in adjusted_weights.items():
# 語義評分
semantic_score = self.semantic_head.score_dimension(
breed_info, dimensions, dimension
)
# 屬性評分
attribute_score = self.attribute_head.score_dimension(
breed_info, dimensions, dimension
)
# 頭融合
fusion_weights = self.head_fusion_weights.get(
dimension, {'semantic': 0.5, 'attribute': 0.5}
)
fused_score = (semantic_score * fusion_weights['semantic'] +
attribute_score * fusion_weights['attribute'])
dimensional_scores[dimension] = fused_score
semantic_total += semantic_score * weight
attribute_total += attribute_score * weight
# 雙向相容性評估
bidirectional_bonus = self._calculate_bidirectional_bonus(
breed_info, dimensions
)
# Apply size bias correction
bias_correction = self._calculate_size_bias_correction(breed_info, dimensions)
# 計算最終分數
base_score = sum(score * adjusted_weights[dim]
for dim, score in dimensional_scores.items())
# Apply corrections
final_score = max(0.0, min(1.0, base_score + bidirectional_bonus + bias_correction))
# 信心度評估
confidence_score = self._calculate_confidence(dimensions)
return BreedScore(
breed_name=breed_info.get('display_name', breed_info['breed_name']),
final_score=final_score,
dimensional_breakdown=dimensional_scores,
semantic_component=semantic_total,
attribute_component=attribute_total,
bidirectional_bonus=bidirectional_bonus,
confidence_score=confidence_score,
explanation=self._generate_explanation(breed_info, dimensions, dimensional_scores)
)
except Exception as e:
print(f"Error scoring breed {breed_info.get('breed_name', 'unknown')}: {str(e)}")
return BreedScore(
breed_name=breed_info.get('display_name', breed_info.get('breed_name', 'Unknown')),
final_score=0.5,
confidence_score=0.0
)
def _get_active_dimensions(self, dimensions: QueryDimensions) -> Set[str]:
"""獲取活躍的維度"""
active = set()
if dimensions.spatial_constraints:
active.add('spatial_compatibility')
if dimensions.activity_level:
active.add('activity_compatibility')
if dimensions.noise_preferences:
active.add('noise_compatibility')
if dimensions.size_preferences:
active.add('size_compatibility')
if dimensions.family_context:
active.add('family_compatibility')
if dimensions.maintenance_level:
active.add('maintenance_compatibility')
return active
def _adjust_dimension_weights(self, active_dimensions: Set[str]) -> Dict[str, float]:
"""調整維度權重"""
if not active_dimensions:
return self.dimension_weights
# 只為活躍維度分配權重
active_weights = {dim: weight for dim, weight in self.dimension_weights.items()
if dim in active_dimensions}
# 正規化權重總和為 1.0
total_weight = sum(active_weights.values())
if total_weight > 0:
active_weights = {dim: weight / total_weight
for dim, weight in active_weights.items()}
return active_weights
def _calculate_bidirectional_bonus(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""計算雙向相容性獎勵"""
try:
bonus = 0.0
# 正向相容性:品種滿足用戶需求
forward_compatibility = self._assess_forward_compatibility(breed_info, dimensions)
# 反向相容性:用戶生活方式適合品種需求
reverse_compatibility = self._assess_reverse_compatibility(breed_info, dimensions)
# 雙向獎勵(較為保守)
bonus = min(0.1, (forward_compatibility + reverse_compatibility) * 0.05)
return bonus
except Exception as e:
print(f"Error calculating bidirectional bonus: {str(e)}")
return 0.0
def _assess_forward_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""評估正向相容性"""
compatibility = 0.0
# 空間需求匹配
if 'apartment' in dimensions.spatial_constraints:
size = breed_info.get('size', '')
if 'small' in size:
compatibility += 0.3
elif 'medium' in size:
compatibility += 0.1
# 活動需求匹配
if 'low' in dimensions.activity_level:
exercise = breed_info.get('exercise_needs', '')
if 'low' in exercise:
compatibility += 0.3
elif 'moderate' in exercise:
compatibility += 0.1
return compatibility
def _assess_reverse_compatibility(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions) -> float:
"""評估反向相容性"""
compatibility = 0.0
# 品種是否能在用戶環境中茁壯成長
exercise_needs = breed_info.get('exercise_needs', '')
if 'high' in exercise_needs:
# 高運動需求品種需要確認用戶能提供足夠運動
if ('high' in dimensions.activity_level or
'house' in dimensions.spatial_constraints):
compatibility += 0.2
else:
compatibility -= 0.2
# 品種護理需求是否與用戶能力匹配
grooming_needs = breed_info.get('grooming_needs', '')
if 'high' in grooming_needs:
if 'high' in dimensions.maintenance_level:
compatibility += 0.1
elif 'low' in dimensions.maintenance_level:
compatibility -= 0.1
return compatibility
def _calculate_size_bias_correction(self, breed_info: Dict,
dimensions: QueryDimensions) -> float:
"""Correct systematic bias toward larger breeds"""
breed_size = breed_info.get('size', '').lower()
# Default no bias correction
correction = 0.0
# Detect if user specified moderate/balanced preferences
if any(term in dimensions.activity_level for term in ['moderate', 'balanced', 'average']):
# Penalize extremes
if breed_size in ['giant', 'toy']:
correction = -0.1
elif breed_size in ['large']:
correction = -0.05
# Boost medium breeds for moderate requirements
if 'medium' in breed_size and 'balanced' in str(dimensions.activity_level):
correction = 0.1
return correction
def _calculate_confidence(self, dimensions: QueryDimensions) -> float:
"""計算推薦信心度"""
# 基於維度覆蓋率和信心分數計算
dimension_count = sum([
len(dimensions.spatial_constraints),
len(dimensions.activity_level),
len(dimensions.noise_preferences),
len(dimensions.size_preferences),
len(dimensions.family_context),
len(dimensions.maintenance_level),
len(dimensions.special_requirements)
])
# 基礎信心度
base_confidence = min(1.0, dimension_count * 0.15)
# 品種提及獎勵
breed_bonus = min(0.2, len(dimensions.breed_mentions) * 0.1)
# 整體信心分數
overall_confidence = dimensions.confidence_scores.get('overall', 0.5)
return min(1.0, base_confidence + breed_bonus + overall_confidence * 0.3)
def _generate_explanation(self, breed_info: Dict[str, Any],
dimensions: QueryDimensions,
dimensional_scores: Dict[str, float]) -> Dict[str, Any]:
"""生成評分解釋"""
try:
explanation = {
'strengths': [],
'considerations': [],
'match_highlights': [],
'score_breakdown': dimensional_scores
}
breed_name = breed_info.get('display_name', '')
# 分析各維度表現
for dimension, score in dimensional_scores.items():
if score >= 0.8:
explanation['strengths'].append(self._get_strength_text(dimension, breed_info))
elif score <= 0.3:
explanation['considerations'].append(self._get_consideration_text(dimension, breed_info))
else:
explanation['match_highlights'].append(f"{dimension}: {score:.2f}")
return explanation
except Exception as e:
print(f"Error generating explanation: {str(e)}")
return {'strengths': [], 'considerations': [], 'match_highlights': []}
def _get_strength_text(self, dimension: str, breed_info: Dict[str, Any]) -> str:
"""Get strength description"""
breed_name = breed_info.get('display_name', '')
if dimension == 'activity_compatibility':
return f"{breed_name} has an activity level that matches your lifestyle very well"
elif dimension == 'noise_compatibility':
return f"{breed_name} has noise characteristics that fit your environment"
elif dimension == 'spatial_compatibility':
return f"{breed_name} is very suitable for your living space"
elif dimension == 'family_compatibility':
return f"{breed_name} performs well in a family environment"
elif dimension == 'maintenance_compatibility':
return f"{breed_name} has grooming needs that match your willingness to commit"
else:
return f"{breed_name} shows strong performance in {dimension}"
def _get_consideration_text(self, dimension: str, breed_info: Dict[str, Any]) -> str:
"""Get consideration description"""
breed_name = breed_info.get('display_name', '')
if dimension == 'activity_compatibility':
return f"{breed_name} may have exercise needs that differ from your lifestyle"
elif dimension == 'noise_compatibility':
return f"{breed_name} has noise characteristics that require special consideration"
elif dimension == 'maintenance_compatibility':
return f"{breed_name} has relatively high grooming requirements"
else:
return f"{breed_name} requires extra consideration in {dimension}"
def score_breed_candidates(candidate_breeds: Set[str],
dimensions: QueryDimensions,
sbert_model: Optional[SentenceTransformer] = None) -> List[BreedScore]:
"""
便利函數:為候選品種評分
Args:
candidate_breeds: 候選品種集合
dimensions: 查詢維度
sbert_model: 可選的SBERT模型
Returns:
List[BreedScore]: 評分結果列表
"""
scorer = MultiHeadScorer(sbert_model)
return scorer.score_breeds(candidate_breeds, dimensions)
|