Spaces:
Running
on
Zero
Running
on
Zero
import traceback | |
from typing import Dict, Any | |
from breed_health_info import breed_health_info | |
from breed_noise_info import breed_noise_info | |
class DimensionScoreCalculator: | |
""" | |
維度評分計算器類別 | |
負責計算各個維度的具體評分,包含空間、運動、美容、經驗、健康和噪音等維度 | |
""" | |
def __init__(self): | |
"""初始化維度評分計算器""" | |
pass | |
def calculate_space_score(self, size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float: | |
""" | |
計算空間適配性評分 | |
完整實現原始版本的空間計算邏輯,包含: | |
1. 動態的基礎分數矩陣 | |
2. 強化空間品質評估 | |
3. 增加極端情況處理 | |
4. 考慮不同空間組合的協同效應 | |
""" | |
def get_base_score(): | |
# 基礎分數矩陣 - 更極端的分數分配 | |
base_matrix = { | |
"Small": { | |
"apartment": { | |
"no_yard": 0.85, # 小型犬在公寓仍然適合 | |
"shared_yard": 0.90, # 共享院子提供額外活動空間 | |
"private_yard": 0.95 # 私人院子最理想 | |
}, | |
"house_small": { | |
"no_yard": 0.80, | |
"shared_yard": 0.85, | |
"private_yard": 0.90 | |
}, | |
"house_large": { | |
"no_yard": 0.75, | |
"shared_yard": 0.80, | |
"private_yard": 0.85 | |
} | |
}, | |
"Medium": { | |
"apartment": { | |
"no_yard": 0.75, | |
"shared_yard": 0.85, | |
"private_yard": 0.90 | |
}, | |
"house_small": { | |
"no_yard": 0.80, | |
"shared_yard": 0.90, | |
"private_yard": 0.90 | |
}, | |
"house_large": { | |
"no_yard": 0.85, | |
"shared_yard": 0.90, | |
"private_yard": 0.95 | |
} | |
}, | |
"Large": { | |
"apartment": { | |
"no_yard": 0.70, | |
"shared_yard": 0.80, | |
"private_yard": 0.85 | |
}, | |
"house_small": { | |
"no_yard": 0.75, | |
"shared_yard": 0.85, | |
"private_yard": 0.90 | |
}, | |
"house_large": { | |
"no_yard": 0.85, | |
"shared_yard": 0.90, | |
"private_yard": 1.0 | |
} | |
}, | |
"Giant": { | |
"apartment": { | |
"no_yard": 0.65, | |
"shared_yard": 0.75, | |
"private_yard": 0.80 | |
}, | |
"house_small": { | |
"no_yard": 0.70, | |
"shared_yard": 0.80, | |
"private_yard": 0.85 | |
}, | |
"house_large": { | |
"no_yard": 0.80, | |
"shared_yard": 0.90, | |
"private_yard": 1.0 | |
} | |
} | |
} | |
yard_type = "private_yard" if has_yard else "no_yard" | |
return base_matrix.get(size, base_matrix["Medium"])[living_space][yard_type] | |
def calculate_exercise_adjustment(): | |
# 運動需求對空間評分的影響 | |
exercise_impact = { | |
"Very High": { | |
"apartment": -0.10, | |
"house_small": -0.05, | |
"house_large": 0 | |
}, | |
"High": { | |
"apartment": -0.08, | |
"house_small": -0.05, | |
"house_large": 0 | |
}, | |
"Moderate": { | |
"apartment": -0.05, | |
"house_small": -0.02, | |
"house_large": 0 | |
}, | |
"Low": { | |
"apartment": 0.10, | |
"house_small": 0.05, | |
"house_large": 0 | |
} | |
} | |
return exercise_impact.get(exercise_needs, exercise_impact["Moderate"])[living_space] | |
def calculate_yard_bonus(): | |
# 院子效益評估更加細緻 | |
if not has_yard: | |
return 0 | |
yard_benefits = { | |
"Giant": { | |
"Very High": 0.25, | |
"High": 0.20, | |
"Moderate": 0.15, | |
"Low": 0.10 | |
}, | |
"Large": { | |
"Very High": 0.20, | |
"High": 0.15, | |
"Moderate": 0.10, | |
"Low": 0.05 | |
}, | |
"Medium": { | |
"Very High": 0.15, | |
"High": 0.10, | |
"Moderate": 0.08, | |
"Low": 0.05 | |
}, | |
"Small": { | |
"Very High": 0.10, | |
"High": 0.08, | |
"Moderate": 0.05, | |
"Low": 0.03 | |
} | |
} | |
size_benefits = yard_benefits.get(size, yard_benefits["Medium"]) | |
return size_benefits.get(exercise_needs, size_benefits["Moderate"]) | |
def apply_extreme_case_adjustments(score): | |
# 處理極端情況 | |
if size == "Giant" and living_space == "apartment": | |
return score * 0.85 | |
if size == "Large" and living_space == "apartment" and exercise_needs == "Very High": | |
return score * 0.85 | |
if size == "Small" and living_space == "house_large" and exercise_needs == "Low": | |
return score * 0.9 # 低運動需求的小型犬在大房子可能過於寬敞 | |
return score | |
# 計算最終分數 | |
base_score = get_base_score() | |
exercise_adj = calculate_exercise_adjustment() | |
yard_bonus = calculate_yard_bonus() | |
# 整合所有評分因素 | |
initial_score = base_score + exercise_adj + yard_bonus | |
# 應用極端情況調整 | |
final_score = apply_extreme_case_adjustments(initial_score) | |
# 確保分數在有效範圍內,但允許更極端的結果 | |
return max(0.05, min(1.0, final_score)) | |
def calculate_exercise_score(self, breed_needs: str, exercise_time: int, exercise_type: str, breed_size: str, living_space: str, breed_info: dict = None) -> float: | |
""" | |
計算品種運動需求與使用者運動條件的匹配度。此函數特別著重: | |
1. 不同品種的運動耐受度差異 | |
2. 運動時間與類型的匹配度 | |
3. 極端運動量的嚴格限制 | |
Parameters: | |
breed_needs: 品種的運動需求等級 | |
exercise_time: 使用者計劃的運動時間(分鐘) | |
exercise_type: 運動類型(輕度/中度/高度) | |
Returns: | |
float: 0.1到1.0之間的匹配分數 | |
""" | |
# 定義每個運動需求等級的具體參數 | |
exercise_levels = { | |
'VERY HIGH': { | |
'min': 120, # 最低需求 | |
'ideal': 150, # 理想運動量 | |
'max': 180, # 最大建議量 | |
'type_weights': { # 不同運動類型的權重 | |
'active_training': 1.0, | |
'moderate_activity': 0.6, | |
'light_walks': 0.3 | |
} | |
}, | |
'HIGH': { | |
'min': 90, | |
'ideal': 120, | |
'max': 150, | |
'type_weights': { | |
'active_training': 0.9, | |
'moderate_activity': 0.8, | |
'light_walks': 0.4 | |
} | |
}, | |
'MODERATE': { | |
'min': 45, | |
'ideal': 60, | |
'max': 90, | |
'type_weights': { | |
'active_training': 0.7, | |
'moderate_activity': 1.0, | |
'light_walks': 0.8 | |
} | |
}, | |
'LOW': { | |
'min': 15, | |
'ideal': 30, | |
'max': 45, | |
'type_weights': { | |
'active_training': 0.5, | |
'moderate_activity': 0.8, | |
'light_walks': 1.0 | |
} | |
} | |
} | |
# 獲取品種的運動參數 | |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE']) | |
# 計算時間匹配度 | |
def calculate_time_score(): | |
"""計算運動時間的匹配度,特別處理過度運動的情況""" | |
if exercise_time < breed_level['min']: | |
# 運動不足的嚴格懲罰 | |
deficit_ratio = exercise_time / breed_level['min'] | |
return max(0.1, deficit_ratio * 0.4) | |
elif exercise_time <= breed_level['ideal']: | |
# 理想範圍內的漸進提升 | |
progress = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min']) | |
return 0.6 + (progress * 0.4) | |
elif exercise_time <= breed_level['max']: | |
# 理想到最大範圍的平緩下降 | |
excess_ratio = (exercise_time - breed_level['ideal']) / (breed_level['max'] - breed_level['ideal']) | |
return 1.0 - (excess_ratio * 0.2) | |
else: | |
# 過度運動的顯著懲罰 | |
excess = (exercise_time - breed_level['max']) / breed_level['max'] | |
# 低運動需求品種的過度運動懲罰更嚴重 | |
penalty_factor = 1.5 if breed_needs.upper() == 'LOW' else 1.0 | |
return max(0.1, 0.8 - (excess * 0.5 * penalty_factor)) | |
# 計算運動類型匹配度 | |
def calculate_type_score(): | |
"""評估運動類型的適合度,考慮品種特性""" | |
base_type_score = breed_level['type_weights'].get(exercise_type, 0.5) | |
# 特殊情況處理 | |
if breed_needs.upper() == 'LOW' and exercise_type == 'active_training': | |
# 低運動需求品種不適合高強度運動 | |
base_type_score *= 0.5 | |
elif breed_needs.upper() == 'VERY HIGH' and exercise_type == 'light_walks': | |
# 高運動需求品種需要更多強度 | |
base_type_score *= 0.6 | |
return base_type_score | |
# 計算最終分數 | |
time_score = calculate_time_score() | |
type_score = calculate_type_score() | |
# 根據運動需求等級調整權重 | |
if breed_needs.upper() == 'LOW': | |
# 低運動需求品種更重視運動類型的合適性 | |
final_score = (time_score * 0.6) + (type_score * 0.4) | |
elif breed_needs.upper() == 'VERY HIGH': | |
# 高運動需求品種更重視運動時間的充足性 | |
final_score = (time_score * 0.7) + (type_score * 0.3) | |
else: | |
final_score = (time_score * 0.65) + (type_score * 0.35) | |
if breed_size in ['Large', 'Giant'] and living_space == 'apartment': | |
if exercise_time >= 120: | |
final_score = min(1.0, final_score * 1.2) | |
# 極端情況的最終調整 | |
if breed_needs.upper() == 'LOW' and exercise_time > breed_level['max'] * 2: | |
# 低運動需求品種的過度運動顯著降分 | |
final_score *= 0.6 | |
elif breed_needs.upper() == 'VERY HIGH' and exercise_time < breed_level['min'] * 0.5: | |
# 高運動需求品種運動嚴重不足降分 | |
final_score *= 0.5 | |
return max(0.1, min(1.0, final_score)) | |
def calculate_grooming_score(self, breed_needs: str, user_commitment: str, breed_size: str) -> float: | |
""" | |
計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。 | |
這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。 | |
""" | |
# 重新設計基礎分數矩陣,讓美容需求的差異更加明顯 | |
base_scores = { | |
"High": { | |
"low": 0.20, # 高需求對低承諾極不合適,顯著降低初始分數 | |
"medium": 0.65, # 中等承諾仍有挑戰 | |
"high": 1.0 # 高承諾最適合 | |
}, | |
"Moderate": { | |
"low": 0.45, # 中等需求對低承諾有困難 | |
"medium": 0.85, # 較好的匹配 | |
"high": 0.95 # 高承諾會有餘力 | |
}, | |
"Low": { | |
"low": 0.90, # 低需求對低承諾很合適 | |
"medium": 0.85, # 略微降低以反映可能過度投入 | |
"high": 0.80 # 可能造成資源浪費 | |
} | |
} | |
# 取得基礎分數 | |
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment] | |
# 根據品種大小調整美容工作量 | |
size_adjustments = { | |
"Giant": { | |
"low": -0.20, # 大型犬的美容工作量顯著增加 | |
"medium": -0.10, | |
"high": -0.05 | |
}, | |
"Large": { | |
"low": -0.15, | |
"medium": -0.05, | |
"high": 0 | |
}, | |
"Medium": { | |
"low": -0.10, | |
"medium": -0.05, | |
"high": 0 | |
}, | |
"Small": { | |
"low": -0.05, | |
"medium": 0, | |
"high": 0 | |
} | |
} | |
# 應用體型調整 | |
size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment] | |
current_score = base_score + size_adjustment | |
# 特殊毛髮類型的額外調整 | |
def get_coat_adjustment(breed_description: str, commitment: str) -> float: | |
"""評估特殊毛髮類型所需的額外維護工作""" | |
adjustments = 0 | |
# 長毛品種需要更多維護 | |
if 'long coat' in breed_description.lower(): | |
coat_penalties = { | |
'low': -0.20, | |
'medium': -0.15, | |
'high': -0.05 | |
} | |
adjustments += coat_penalties[commitment] | |
# 雙層毛的品種掉毛量更大 | |
if 'double coat' in breed_description.lower(): | |
double_coat_penalties = { | |
'low': -0.15, | |
'medium': -0.10, | |
'high': -0.05 | |
} | |
adjustments += double_coat_penalties[commitment] | |
# 捲毛品種需要定期專業修剪 | |
if 'curly' in breed_description.lower(): | |
curly_penalties = { | |
'low': -0.15, | |
'medium': -0.10, | |
'high': -0.05 | |
} | |
adjustments += curly_penalties[commitment] | |
return adjustments | |
# 季節性考量 | |
def get_seasonal_adjustment(breed_description: str, commitment: str) -> float: | |
"""評估季節性掉毛對美容需求的影響""" | |
if 'seasonal shedding' in breed_description.lower(): | |
seasonal_penalties = { | |
'low': -0.15, | |
'medium': -0.10, | |
'high': -0.05 | |
} | |
return seasonal_penalties[commitment] | |
return 0 | |
# 專業美容需求評估 | |
def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float: | |
"""評估需要專業美容服務的影響""" | |
if 'professional grooming' in breed_description.lower(): | |
grooming_penalties = { | |
'low': -0.20, | |
'medium': -0.15, | |
'high': -0.05 | |
} | |
return grooming_penalties[commitment] | |
return 0 | |
# 應用所有額外調整 | |
coat_adjustment = get_coat_adjustment("", user_commitment) | |
seasonal_adjustment = get_seasonal_adjustment("", user_commitment) | |
professional_adjustment = get_professional_grooming_adjustment("", user_commitment) | |
final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment | |
# 確保分數在有意義的範圍內,但允許更大的差異 | |
return max(0.1, min(1.0, final_score)) | |
def calculate_experience_score(self, care_level: str, user_experience: str, temperament: str) -> float: | |
""" | |
計算使用者經驗與品種需求的匹配分數,更平衡的經驗等級影響 | |
改進重點: | |
1. 提高初學者的基礎分數 | |
2. 縮小經驗等級間的差距 | |
3. 保持適度的區分度 | |
""" | |
# 基礎分數矩陣 - 更合理的分數分配 | |
base_scores = { | |
"High": { | |
"beginner": 0.55, # 提高起始分,讓新手也有機會 | |
"intermediate": 0.80, # 中級玩家有不錯的勝任能力 | |
"advanced": 0.95 # 資深者幾乎完全勝任 | |
}, | |
"Moderate": { | |
"beginner": 0.65, # 適中難度對新手更友善 | |
"intermediate": 0.85, # 中級玩家相當適合 | |
"advanced": 0.90 # 資深者完全勝任 | |
}, | |
"Low": { | |
"beginner": 0.85, # 新手友善品種維持高分 | |
"intermediate": 0.90, # 中級玩家幾乎完全勝任 | |
"advanced": 0.90 # 資深者完全勝任 | |
} | |
} | |
# 取得基礎分數 | |
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience] | |
# 性格評估的權重也需要調整 | |
temperament_lower = temperament.lower() | |
temperament_adjustments = 0.0 | |
# 根據經驗等級設定不同的特徵評估標準,降低懲罰程度 | |
if user_experience == "beginner": | |
difficult_traits = { | |
'stubborn': -0.15, # 降低懲罰程度 | |
'independent': -0.12, | |
'dominant': -0.12, | |
'strong-willed': -0.10, | |
'protective': -0.10, | |
'aloof': -0.08, | |
'energetic': -0.08, | |
'aggressive': -0.20 # 保持較高懲罰,因為安全考慮 | |
} | |
easy_traits = { | |
'gentle': 0.08, # 提高獎勵以平衡 | |
'friendly': 0.08, | |
'eager to please': 0.10, | |
'patient': 0.08, | |
'adaptable': 0.08, | |
'calm': 0.08 | |
} | |
# 計算特徵調整 | |
for trait, penalty in difficult_traits.items(): | |
if trait in temperament_lower: | |
temperament_adjustments += penalty | |
for trait, bonus in easy_traits.items(): | |
if trait in temperament_lower: | |
temperament_adjustments += bonus | |
# 品種類型特殊評估,降低懲罰程度 | |
if 'terrier' in temperament_lower: | |
temperament_adjustments -= 0.10 # 降低懲罰 | |
elif 'working' in temperament_lower: | |
temperament_adjustments -= 0.12 | |
elif 'guard' in temperament_lower: | |
temperament_adjustments -= 0.12 | |
elif user_experience == "intermediate": | |
moderate_traits = { | |
'stubborn': -0.08, | |
'independent': -0.05, | |
'intelligent': 0.10, | |
'athletic': 0.08, | |
'versatile': 0.08, | |
'protective': -0.05 | |
} | |
for trait, adjustment in moderate_traits.items(): | |
if trait in temperament_lower: | |
temperament_adjustments += adjustment | |
else: # advanced | |
advanced_traits = { | |
'stubborn': 0.05, | |
'independent': 0.05, | |
'intelligent': 0.10, | |
'protective': 0.05, | |
'strong-willed': 0.05 | |
} | |
for trait, bonus in advanced_traits.items(): | |
if trait in temperament_lower: | |
temperament_adjustments += bonus | |
# 確保最終分數範圍合理 | |
final_score = max(0.15, min(1.0, score + temperament_adjustments)) | |
return final_score | |
def calculate_health_score(self, breed_name: str, health_sensitivity: str) -> float: | |
""" | |
計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結 | |
1. 根據使用者的健康敏感度調整分數 | |
2. 更嚴格的健康問題評估 | |
3. 考慮多重健康問題的累積效應 | |
4. 加入遺傳疾病的特別考量 | |
""" | |
try: | |
if breed_name not in breed_health_info: | |
return 0.5 | |
except ImportError: | |
return 0.5 | |
health_notes = breed_health_info[breed_name]['health_notes'].lower() | |
# 嚴重健康問題 - 加重扣分 | |
severe_conditions = { | |
'hip dysplasia': -0.20, # 髖關節發育不良,影響生活品質 | |
'heart disease': -0.15, # 心臟疾病,需要長期治療 | |
'progressive retinal atrophy': -0.15, # 進行性視網膜萎縮,導致失明 | |
'bloat': -0.18, # 胃扭轉,致命風險 | |
'epilepsy': -0.15, # 癲癇,需要長期藥物控制 | |
'degenerative myelopathy': -0.15, # 脊髓退化,影響行動能力 | |
'von willebrand disease': -0.12 # 血液凝固障礙 | |
} | |
# 中度健康問題 - 適度扣分 | |
moderate_conditions = { | |
'allergies': -0.12, # 過敏問題,需要持續關注 | |
'eye problems': -0.15, # 眼睛問題,可能需要手術 | |
'joint problems': -0.15, # 關節問題,影響運動能力 | |
'hypothyroidism': -0.12, # 甲狀腺功能低下,需要藥物治療 | |
'ear infections': -0.10, # 耳道感染,需要定期清理 | |
'skin issues': -0.12 # 皮膚問題,需要特殊護理 | |
} | |
# 輕微健康問題 - 輕微扣分 | |
minor_conditions = { | |
'dental issues': -0.08, # 牙齒問題,需要定期護理 | |
'weight gain tendency': -0.08, # 易胖體質,需要控制飲食 | |
'minor allergies': -0.06, # 輕微過敏,可控制 | |
'seasonal allergies': -0.06 # 季節性過敏 | |
} | |
# 計算基礎健康分數 | |
health_score = 1.0 | |
# 健康問題累積效應計算 | |
condition_counts = { | |
'severe': 0, | |
'moderate': 0, | |
'minor': 0 | |
} | |
# 計算各等級健康問題的數量和影響 | |
for condition, penalty in severe_conditions.items(): | |
if condition in health_notes: | |
health_score += penalty | |
condition_counts['severe'] += 1 | |
for condition, penalty in moderate_conditions.items(): | |
if condition in health_notes: | |
health_score += penalty | |
condition_counts['moderate'] += 1 | |
for condition, penalty in minor_conditions.items(): | |
if condition in health_notes: | |
health_score += penalty | |
condition_counts['minor'] += 1 | |
# 多重問題的額外懲罰(累積效應) | |
if condition_counts['severe'] > 1: | |
health_score *= (0.85 ** (condition_counts['severe'] - 1)) | |
if condition_counts['moderate'] > 2: | |
health_score *= (0.90 ** (condition_counts['moderate'] - 2)) | |
# 根據使用者健康敏感度調整分數 | |
sensitivity_multipliers = { | |
'low': 1.1, # 較不在意健康問題 | |
'medium': 1.0, # 標準評估 | |
'high': 0.85 # 非常注重健康問題 | |
} | |
health_score *= sensitivity_multipliers.get(health_sensitivity, 1.0) | |
# 壽命影響評估 | |
try: | |
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12') | |
years = float(lifespan.split('-')[0]) | |
if years < 8: | |
health_score *= 0.85 # 短壽命顯著降低分數 | |
elif years < 10: | |
health_score *= 0.92 # 較短壽命輕微降低分數 | |
elif years > 13: | |
health_score *= 1.1 # 長壽命適度加分 | |
except: | |
pass | |
# 特殊健康優勢 | |
if 'generally healthy' in health_notes or 'hardy breed' in health_notes: | |
health_score *= 1.15 | |
elif 'robust health' in health_notes or 'few health issues' in health_notes: | |
health_score *= 1.1 | |
# 確保分數在合理範圍內,但允許更大的分數差異 | |
return max(0.1, min(1.0, health_score)) | |
def calculate_noise_score(self, breed_name: str, noise_tolerance: str, living_space: str, has_children: bool, children_age: str) -> float: | |
""" | |
計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估,很多人棄養就是因為叫聲 | |
""" | |
try: | |
if breed_name not in breed_noise_info: | |
return 0.5 | |
except ImportError: | |
return 0.5 | |
noise_info = breed_noise_info[breed_name] | |
noise_level = noise_info['noise_level'].lower() | |
noise_notes = noise_info['noise_notes'].lower() | |
# 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度 | |
base_scores = { | |
'low': { | |
'low': 1.0, # 安靜的狗對低容忍完美匹配 | |
'medium': 0.95, # 安靜的狗對一般容忍很好 | |
'high': 0.90 # 安靜的狗對高容忍當然可以 | |
}, | |
'medium': { | |
'low': 0.60, # 一般吠叫對低容忍較困難 | |
'medium': 0.90, # 一般吠叫對一般容忍可接受 | |
'high': 0.95 # 一般吠叫對高容忍很好 | |
}, | |
'high': { | |
'low': 0.25, # 愛叫的狗對低容忍極不適合 | |
'medium': 0.65, # 愛叫的狗對一般容忍有挑戰 | |
'high': 0.90 # 愛叫的狗對高容忍可以接受 | |
}, | |
'varies': { | |
'low': 0.50, # 不確定的情況對低容忍風險較大 | |
'medium': 0.75, # 不確定的情況對一般容忍可嘗試 | |
'high': 0.85 # 不確定的情況對高容忍問題較小 | |
} | |
} | |
# 取得基礎分數 | |
base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[noise_tolerance] | |
# 吠叫原因評估,根據環境調整懲罰程度 | |
barking_penalties = { | |
'separation anxiety': { | |
'apartment': -0.30, # 在公寓對鄰居影響更大 | |
'house_small': -0.25, | |
'house_large': -0.20 | |
}, | |
'excessive barking': { | |
'apartment': -0.25, | |
'house_small': -0.20, | |
'house_large': -0.15 | |
}, | |
'territorial': { | |
'apartment': -0.20, # 在公寓更容易被觸發 | |
'house_small': -0.15, | |
'house_large': -0.10 | |
}, | |
'alert barking': { | |
'apartment': -0.15, # 公寓環境刺激較多 | |
'house_small': -0.10, | |
'house_large': -0.08 | |
}, | |
'attention seeking': { | |
'apartment': -0.15, | |
'house_small': -0.12, | |
'house_large': -0.10 | |
} | |
} | |
# 計算環境相關的吠叫懲罰 | |
barking_penalty = 0 | |
for trigger, penalties in barking_penalties.items(): | |
if trigger in noise_notes: | |
barking_penalty += penalties.get(living_space, -0.15) | |
# 特殊情況評估 | |
special_adjustments = 0 | |
if has_children: | |
# 孩童年齡相關調整 | |
child_age_adjustments = { | |
'toddler': { | |
'high': -0.20, # 幼童對吵鬧更敏感 | |
'medium': -0.15, | |
'low': -0.05 | |
}, | |
'school_age': { | |
'high': -0.15, | |
'medium': -0.10, | |
'low': -0.05 | |
}, | |
'teenager': { | |
'high': -0.10, | |
'medium': -0.05, | |
'low': -0.02 | |
} | |
} | |
# 根據孩童年齡和噪音等級調整 | |
age_adj = child_age_adjustments.get(children_age, | |
child_age_adjustments['school_age']) | |
special_adjustments += age_adj.get(noise_level, -0.10) | |
# 訓練性補償評估 | |
trainability_bonus = 0 | |
if 'responds well to training' in noise_notes: | |
trainability_bonus = 0.12 | |
elif 'can be trained' in noise_notes: | |
trainability_bonus = 0.08 | |
elif 'difficult to train' in noise_notes: | |
trainability_bonus = 0.02 | |
# 夜間吠叫特別考量 | |
if 'night barking' in noise_notes or 'howls' in noise_notes: | |
if living_space == 'apartment': | |
special_adjustments -= 0.15 | |
elif living_space == 'house_small': | |
special_adjustments -= 0.10 | |
else: | |
special_adjustments -= 0.05 | |
# 計算最終分數,確保更大的分數範圍 | |
final_score = base_score + barking_penalty + special_adjustments + trainability_bonus | |
return max(0.1, min(1.0, final_score)) | |