Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,605 Bytes
1e4c9bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
import traceback
from typing import Dict, Any
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
class DimensionScoreCalculator:
"""
維度評分計算器類別
負責計算各個維度的具體評分,包含空間、運動、美容、經驗、健康和噪音等維度
"""
def __init__(self):
"""初始化維度評分計算器"""
pass
def calculate_space_score(self, size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
"""
計算空間適配性評分
完整實現原始版本的空間計算邏輯,包含:
1. 動態的基礎分數矩陣
2. 強化空間品質評估
3. 增加極端情況處理
4. 考慮不同空間組合的協同效應
"""
def get_base_score():
# 基礎分數矩陣 - 更極端的分數分配
base_matrix = {
"Small": {
"apartment": {
"no_yard": 0.85, # 小型犬在公寓仍然適合
"shared_yard": 0.90, # 共享院子提供額外活動空間
"private_yard": 0.95 # 私人院子最理想
},
"house_small": {
"no_yard": 0.80,
"shared_yard": 0.85,
"private_yard": 0.90
},
"house_large": {
"no_yard": 0.75,
"shared_yard": 0.80,
"private_yard": 0.85
}
},
"Medium": {
"apartment": {
"no_yard": 0.75,
"shared_yard": 0.85,
"private_yard": 0.90
},
"house_small": {
"no_yard": 0.80,
"shared_yard": 0.90,
"private_yard": 0.90
},
"house_large": {
"no_yard": 0.85,
"shared_yard": 0.90,
"private_yard": 0.95
}
},
"Large": {
"apartment": {
"no_yard": 0.70,
"shared_yard": 0.80,
"private_yard": 0.85
},
"house_small": {
"no_yard": 0.75,
"shared_yard": 0.85,
"private_yard": 0.90
},
"house_large": {
"no_yard": 0.85,
"shared_yard": 0.90,
"private_yard": 1.0
}
},
"Giant": {
"apartment": {
"no_yard": 0.65,
"shared_yard": 0.75,
"private_yard": 0.80
},
"house_small": {
"no_yard": 0.70,
"shared_yard": 0.80,
"private_yard": 0.85
},
"house_large": {
"no_yard": 0.80,
"shared_yard": 0.90,
"private_yard": 1.0
}
}
}
yard_type = "private_yard" if has_yard else "no_yard"
return base_matrix.get(size, base_matrix["Medium"])[living_space][yard_type]
def calculate_exercise_adjustment():
# 運動需求對空間評分的影響
exercise_impact = {
"Very High": {
"apartment": -0.10,
"house_small": -0.05,
"house_large": 0
},
"High": {
"apartment": -0.08,
"house_small": -0.05,
"house_large": 0
},
"Moderate": {
"apartment": -0.05,
"house_small": -0.02,
"house_large": 0
},
"Low": {
"apartment": 0.10,
"house_small": 0.05,
"house_large": 0
}
}
return exercise_impact.get(exercise_needs, exercise_impact["Moderate"])[living_space]
def calculate_yard_bonus():
# 院子效益評估更加細緻
if not has_yard:
return 0
yard_benefits = {
"Giant": {
"Very High": 0.25,
"High": 0.20,
"Moderate": 0.15,
"Low": 0.10
},
"Large": {
"Very High": 0.20,
"High": 0.15,
"Moderate": 0.10,
"Low": 0.05
},
"Medium": {
"Very High": 0.15,
"High": 0.10,
"Moderate": 0.08,
"Low": 0.05
},
"Small": {
"Very High": 0.10,
"High": 0.08,
"Moderate": 0.05,
"Low": 0.03
}
}
size_benefits = yard_benefits.get(size, yard_benefits["Medium"])
return size_benefits.get(exercise_needs, size_benefits["Moderate"])
def apply_extreme_case_adjustments(score):
# 處理極端情況
if size == "Giant" and living_space == "apartment":
return score * 0.85
if size == "Large" and living_space == "apartment" and exercise_needs == "Very High":
return score * 0.85
if size == "Small" and living_space == "house_large" and exercise_needs == "Low":
return score * 0.9 # 低運動需求的小型犬在大房子可能過於寬敞
return score
# 計算最終分數
base_score = get_base_score()
exercise_adj = calculate_exercise_adjustment()
yard_bonus = calculate_yard_bonus()
# 整合所有評分因素
initial_score = base_score + exercise_adj + yard_bonus
# 應用極端情況調整
final_score = apply_extreme_case_adjustments(initial_score)
# 確保分數在有效範圍內,但允許更極端的結果
return max(0.05, min(1.0, final_score))
def calculate_exercise_score(self, breed_needs: str, exercise_time: int, exercise_type: str, breed_size: str, living_space: str, breed_info: dict = None) -> float:
"""
計算品種運動需求與使用者運動條件的匹配度。此函數特別著重:
1. 不同品種的運動耐受度差異
2. 運動時間與類型的匹配度
3. 極端運動量的嚴格限制
Parameters:
breed_needs: 品種的運動需求等級
exercise_time: 使用者計劃的運動時間(分鐘)
exercise_type: 運動類型(輕度/中度/高度)
Returns:
float: 0.1到1.0之間的匹配分數
"""
# 定義每個運動需求等級的具體參數
exercise_levels = {
'VERY HIGH': {
'min': 120, # 最低需求
'ideal': 150, # 理想運動量
'max': 180, # 最大建議量
'type_weights': { # 不同運動類型的權重
'active_training': 1.0,
'moderate_activity': 0.6,
'light_walks': 0.3
}
},
'HIGH': {
'min': 90,
'ideal': 120,
'max': 150,
'type_weights': {
'active_training': 0.9,
'moderate_activity': 0.8,
'light_walks': 0.4
}
},
'MODERATE': {
'min': 45,
'ideal': 60,
'max': 90,
'type_weights': {
'active_training': 0.7,
'moderate_activity': 1.0,
'light_walks': 0.8
}
},
'LOW': {
'min': 15,
'ideal': 30,
'max': 45,
'type_weights': {
'active_training': 0.5,
'moderate_activity': 0.8,
'light_walks': 1.0
}
}
}
# 獲取品種的運動參數
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
# 計算時間匹配度
def calculate_time_score():
"""計算運動時間的匹配度,特別處理過度運動的情況"""
if exercise_time < breed_level['min']:
# 運動不足的嚴格懲罰
deficit_ratio = exercise_time / breed_level['min']
return max(0.1, deficit_ratio * 0.4)
elif exercise_time <= breed_level['ideal']:
# 理想範圍內的漸進提升
progress = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
return 0.6 + (progress * 0.4)
elif exercise_time <= breed_level['max']:
# 理想到最大範圍的平緩下降
excess_ratio = (exercise_time - breed_level['ideal']) / (breed_level['max'] - breed_level['ideal'])
return 1.0 - (excess_ratio * 0.2)
else:
# 過度運動的顯著懲罰
excess = (exercise_time - breed_level['max']) / breed_level['max']
# 低運動需求品種的過度運動懲罰更嚴重
penalty_factor = 1.5 if breed_needs.upper() == 'LOW' else 1.0
return max(0.1, 0.8 - (excess * 0.5 * penalty_factor))
# 計算運動類型匹配度
def calculate_type_score():
"""評估運動類型的適合度,考慮品種特性"""
base_type_score = breed_level['type_weights'].get(exercise_type, 0.5)
# 特殊情況處理
if breed_needs.upper() == 'LOW' and exercise_type == 'active_training':
# 低運動需求品種不適合高強度運動
base_type_score *= 0.5
elif breed_needs.upper() == 'VERY HIGH' and exercise_type == 'light_walks':
# 高運動需求品種需要更多強度
base_type_score *= 0.6
return base_type_score
# 計算最終分數
time_score = calculate_time_score()
type_score = calculate_type_score()
# 根據運動需求等級調整權重
if breed_needs.upper() == 'LOW':
# 低運動需求品種更重視運動類型的合適性
final_score = (time_score * 0.6) + (type_score * 0.4)
elif breed_needs.upper() == 'VERY HIGH':
# 高運動需求品種更重視運動時間的充足性
final_score = (time_score * 0.7) + (type_score * 0.3)
else:
final_score = (time_score * 0.65) + (type_score * 0.35)
if breed_size in ['Large', 'Giant'] and living_space == 'apartment':
if exercise_time >= 120:
final_score = min(1.0, final_score * 1.2)
# 極端情況的最終調整
if breed_needs.upper() == 'LOW' and exercise_time > breed_level['max'] * 2:
# 低運動需求品種的過度運動顯著降分
final_score *= 0.6
elif breed_needs.upper() == 'VERY HIGH' and exercise_time < breed_level['min'] * 0.5:
# 高運動需求品種運動嚴重不足降分
final_score *= 0.5
return max(0.1, min(1.0, final_score))
def calculate_grooming_score(self, breed_needs: str, user_commitment: str, breed_size: str) -> float:
"""
計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。
這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。
"""
# 重新設計基礎分數矩陣,讓美容需求的差異更加明顯
base_scores = {
"High": {
"low": 0.20, # 高需求對低承諾極不合適,顯著降低初始分數
"medium": 0.65, # 中等承諾仍有挑戰
"high": 1.0 # 高承諾最適合
},
"Moderate": {
"low": 0.45, # 中等需求對低承諾有困難
"medium": 0.85, # 較好的匹配
"high": 0.95 # 高承諾會有餘力
},
"Low": {
"low": 0.90, # 低需求對低承諾很合適
"medium": 0.85, # 略微降低以反映可能過度投入
"high": 0.80 # 可能造成資源浪費
}
}
# 取得基礎分數
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
# 根據品種大小調整美容工作量
size_adjustments = {
"Giant": {
"low": -0.20, # 大型犬的美容工作量顯著增加
"medium": -0.10,
"high": -0.05
},
"Large": {
"low": -0.15,
"medium": -0.05,
"high": 0
},
"Medium": {
"low": -0.10,
"medium": -0.05,
"high": 0
},
"Small": {
"low": -0.05,
"medium": 0,
"high": 0
}
}
# 應用體型調整
size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment]
current_score = base_score + size_adjustment
# 特殊毛髮類型的額外調整
def get_coat_adjustment(breed_description: str, commitment: str) -> float:
"""評估特殊毛髮類型所需的額外維護工作"""
adjustments = 0
# 長毛品種需要更多維護
if 'long coat' in breed_description.lower():
coat_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
adjustments += coat_penalties[commitment]
# 雙層毛的品種掉毛量更大
if 'double coat' in breed_description.lower():
double_coat_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += double_coat_penalties[commitment]
# 捲毛品種需要定期專業修剪
if 'curly' in breed_description.lower():
curly_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += curly_penalties[commitment]
return adjustments
# 季節性考量
def get_seasonal_adjustment(breed_description: str, commitment: str) -> float:
"""評估季節性掉毛對美容需求的影響"""
if 'seasonal shedding' in breed_description.lower():
seasonal_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
return seasonal_penalties[commitment]
return 0
# 專業美容需求評估
def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float:
"""評估需要專業美容服務的影響"""
if 'professional grooming' in breed_description.lower():
grooming_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
return grooming_penalties[commitment]
return 0
# 應用所有額外調整
coat_adjustment = get_coat_adjustment("", user_commitment)
seasonal_adjustment = get_seasonal_adjustment("", user_commitment)
professional_adjustment = get_professional_grooming_adjustment("", user_commitment)
final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment
# 確保分數在有意義的範圍內,但允許更大的差異
return max(0.1, min(1.0, final_score))
def calculate_experience_score(self, care_level: str, user_experience: str, temperament: str) -> float:
"""
計算使用者經驗與品種需求的匹配分數,更平衡的經驗等級影響
改進重點:
1. 提高初學者的基礎分數
2. 縮小經驗等級間的差距
3. 保持適度的區分度
"""
# 基礎分數矩陣 - 更合理的分數分配
base_scores = {
"High": {
"beginner": 0.55, # 提高起始分,讓新手也有機會
"intermediate": 0.80, # 中級玩家有不錯的勝任能力
"advanced": 0.95 # 資深者幾乎完全勝任
},
"Moderate": {
"beginner": 0.65, # 適中難度對新手更友善
"intermediate": 0.85, # 中級玩家相當適合
"advanced": 0.90 # 資深者完全勝任
},
"Low": {
"beginner": 0.85, # 新手友善品種維持高分
"intermediate": 0.90, # 中級玩家幾乎完全勝任
"advanced": 0.90 # 資深者完全勝任
}
}
# 取得基礎分數
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
# 性格評估的權重也需要調整
temperament_lower = temperament.lower()
temperament_adjustments = 0.0
# 根據經驗等級設定不同的特徵評估標準,降低懲罰程度
if user_experience == "beginner":
difficult_traits = {
'stubborn': -0.15, # 降低懲罰程度
'independent': -0.12,
'dominant': -0.12,
'strong-willed': -0.10,
'protective': -0.10,
'aloof': -0.08,
'energetic': -0.08,
'aggressive': -0.20 # 保持較高懲罰,因為安全考慮
}
easy_traits = {
'gentle': 0.08, # 提高獎勵以平衡
'friendly': 0.08,
'eager to please': 0.10,
'patient': 0.08,
'adaptable': 0.08,
'calm': 0.08
}
# 計算特徵調整
for trait, penalty in difficult_traits.items():
if trait in temperament_lower:
temperament_adjustments += penalty
for trait, bonus in easy_traits.items():
if trait in temperament_lower:
temperament_adjustments += bonus
# 品種類型特殊評估,降低懲罰程度
if 'terrier' in temperament_lower:
temperament_adjustments -= 0.10 # 降低懲罰
elif 'working' in temperament_lower:
temperament_adjustments -= 0.12
elif 'guard' in temperament_lower:
temperament_adjustments -= 0.12
elif user_experience == "intermediate":
moderate_traits = {
'stubborn': -0.08,
'independent': -0.05,
'intelligent': 0.10,
'athletic': 0.08,
'versatile': 0.08,
'protective': -0.05
}
for trait, adjustment in moderate_traits.items():
if trait in temperament_lower:
temperament_adjustments += adjustment
else: # advanced
advanced_traits = {
'stubborn': 0.05,
'independent': 0.05,
'intelligent': 0.10,
'protective': 0.05,
'strong-willed': 0.05
}
for trait, bonus in advanced_traits.items():
if trait in temperament_lower:
temperament_adjustments += bonus
# 確保最終分數範圍合理
final_score = max(0.15, min(1.0, score + temperament_adjustments))
return final_score
def calculate_health_score(self, breed_name: str, health_sensitivity: str) -> float:
"""
計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結
1. 根據使用者的健康敏感度調整分數
2. 更嚴格的健康問題評估
3. 考慮多重健康問題的累積效應
4. 加入遺傳疾病的特別考量
"""
try:
if breed_name not in breed_health_info:
return 0.5
except ImportError:
return 0.5
health_notes = breed_health_info[breed_name]['health_notes'].lower()
# 嚴重健康問題 - 加重扣分
severe_conditions = {
'hip dysplasia': -0.20, # 髖關節發育不良,影響生活品質
'heart disease': -0.15, # 心臟疾病,需要長期治療
'progressive retinal atrophy': -0.15, # 進行性視網膜萎縮,導致失明
'bloat': -0.18, # 胃扭轉,致命風險
'epilepsy': -0.15, # 癲癇,需要長期藥物控制
'degenerative myelopathy': -0.15, # 脊髓退化,影響行動能力
'von willebrand disease': -0.12 # 血液凝固障礙
}
# 中度健康問題 - 適度扣分
moderate_conditions = {
'allergies': -0.12, # 過敏問題,需要持續關注
'eye problems': -0.15, # 眼睛問題,可能需要手術
'joint problems': -0.15, # 關節問題,影響運動能力
'hypothyroidism': -0.12, # 甲狀腺功能低下,需要藥物治療
'ear infections': -0.10, # 耳道感染,需要定期清理
'skin issues': -0.12 # 皮膚問題,需要特殊護理
}
# 輕微健康問題 - 輕微扣分
minor_conditions = {
'dental issues': -0.08, # 牙齒問題,需要定期護理
'weight gain tendency': -0.08, # 易胖體質,需要控制飲食
'minor allergies': -0.06, # 輕微過敏,可控制
'seasonal allergies': -0.06 # 季節性過敏
}
# 計算基礎健康分數
health_score = 1.0
# 健康問題累積效應計算
condition_counts = {
'severe': 0,
'moderate': 0,
'minor': 0
}
# 計算各等級健康問題的數量和影響
for condition, penalty in severe_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['severe'] += 1
for condition, penalty in moderate_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['moderate'] += 1
for condition, penalty in minor_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['minor'] += 1
# 多重問題的額外懲罰(累積效應)
if condition_counts['severe'] > 1:
health_score *= (0.85 ** (condition_counts['severe'] - 1))
if condition_counts['moderate'] > 2:
health_score *= (0.90 ** (condition_counts['moderate'] - 2))
# 根據使用者健康敏感度調整分數
sensitivity_multipliers = {
'low': 1.1, # 較不在意健康問題
'medium': 1.0, # 標準評估
'high': 0.85 # 非常注重健康問題
}
health_score *= sensitivity_multipliers.get(health_sensitivity, 1.0)
# 壽命影響評估
try:
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
years = float(lifespan.split('-')[0])
if years < 8:
health_score *= 0.85 # 短壽命顯著降低分數
elif years < 10:
health_score *= 0.92 # 較短壽命輕微降低分數
elif years > 13:
health_score *= 1.1 # 長壽命適度加分
except:
pass
# 特殊健康優勢
if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
health_score *= 1.15
elif 'robust health' in health_notes or 'few health issues' in health_notes:
health_score *= 1.1
# 確保分數在合理範圍內,但允許更大的分數差異
return max(0.1, min(1.0, health_score))
def calculate_noise_score(self, breed_name: str, noise_tolerance: str, living_space: str, has_children: bool, children_age: str) -> float:
"""
計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估,很多人棄養就是因為叫聲
"""
try:
if breed_name not in breed_noise_info:
return 0.5
except ImportError:
return 0.5
noise_info = breed_noise_info[breed_name]
noise_level = noise_info['noise_level'].lower()
noise_notes = noise_info['noise_notes'].lower()
# 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
base_scores = {
'low': {
'low': 1.0, # 安靜的狗對低容忍完美匹配
'medium': 0.95, # 安靜的狗對一般容忍很好
'high': 0.90 # 安靜的狗對高容忍當然可以
},
'medium': {
'low': 0.60, # 一般吠叫對低容忍較困難
'medium': 0.90, # 一般吠叫對一般容忍可接受
'high': 0.95 # 一般吠叫對高容忍很好
},
'high': {
'low': 0.25, # 愛叫的狗對低容忍極不適合
'medium': 0.65, # 愛叫的狗對一般容忍有挑戰
'high': 0.90 # 愛叫的狗對高容忍可以接受
},
'varies': {
'low': 0.50, # 不確定的情況對低容忍風險較大
'medium': 0.75, # 不確定的情況對一般容忍可嘗試
'high': 0.85 # 不確定的情況對高容忍問題較小
}
}
# 取得基礎分數
base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[noise_tolerance]
# 吠叫原因評估,根據環境調整懲罰程度
barking_penalties = {
'separation anxiety': {
'apartment': -0.30, # 在公寓對鄰居影響更大
'house_small': -0.25,
'house_large': -0.20
},
'excessive barking': {
'apartment': -0.25,
'house_small': -0.20,
'house_large': -0.15
},
'territorial': {
'apartment': -0.20, # 在公寓更容易被觸發
'house_small': -0.15,
'house_large': -0.10
},
'alert barking': {
'apartment': -0.15, # 公寓環境刺激較多
'house_small': -0.10,
'house_large': -0.08
},
'attention seeking': {
'apartment': -0.15,
'house_small': -0.12,
'house_large': -0.10
}
}
# 計算環境相關的吠叫懲罰
barking_penalty = 0
for trigger, penalties in barking_penalties.items():
if trigger in noise_notes:
barking_penalty += penalties.get(living_space, -0.15)
# 特殊情況評估
special_adjustments = 0
if has_children:
# 孩童年齡相關調整
child_age_adjustments = {
'toddler': {
'high': -0.20, # 幼童對吵鬧更敏感
'medium': -0.15,
'low': -0.05
},
'school_age': {
'high': -0.15,
'medium': -0.10,
'low': -0.05
},
'teenager': {
'high': -0.10,
'medium': -0.05,
'low': -0.02
}
}
# 根據孩童年齡和噪音等級調整
age_adj = child_age_adjustments.get(children_age,
child_age_adjustments['school_age'])
special_adjustments += age_adj.get(noise_level, -0.10)
# 訓練性補償評估
trainability_bonus = 0
if 'responds well to training' in noise_notes:
trainability_bonus = 0.12
elif 'can be trained' in noise_notes:
trainability_bonus = 0.08
elif 'difficult to train' in noise_notes:
trainability_bonus = 0.02
# 夜間吠叫特別考量
if 'night barking' in noise_notes or 'howls' in noise_notes:
if living_space == 'apartment':
special_adjustments -= 0.15
elif living_space == 'house_small':
special_adjustments -= 0.10
else:
special_adjustments -= 0.05
# 計算最終分數,確保更大的分數範圍
final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
return max(0.1, min(1.0, final_score))
|