TheInCube / app.py
DSatishchandra's picture
Update app.py
2867513 verified
raw
history blame
3.61 kB
# app.py
import gradio as gr
import pandas as pd
import numpy as np
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from sklearn.ensemble import RandomForestClassifier
import joblib
import os
# Step 1: Load Hugging Face model for anomaly detection
# Using the "huggingface-course/distilbert-base-uncased-finetuned-imdb" model
tokenizer = AutoTokenizer.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
model = AutoModelForSequenceClassification.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
anomaly_detection = pipeline("text-classification", model=model, tokenizer=tokenizer)
# Step 2: Train or Load the Random Forest model for failure prediction
if not os.path.exists('failure_prediction_model.pkl'):
# Sample data (replace this with real Cisco device metrics data)
data = pd.DataFrame({
'cpu_usage': [10, 20, 15, 35, 55],
'memory_usage': [30, 60, 45, 50, 80],
'error_rate': [0, 1, 0, 2, 5],
'failure': [0, 1, 0, 1, 1] # 0 = no failure, 1 = failure
})
# Features and target
X = data[['cpu_usage', 'memory_usage', 'error_rate']]
y = data['failure']
# Train the Random Forest model
failure_prediction_model = RandomForestClassifier(n_estimators=100, random_state=42)
failure_prediction_model.fit(X, y)
# Save the model for future use
joblib.dump(failure_prediction_model, 'failure_prediction_model.pkl')
else:
# Load the trained model from file
failure_prediction_model = joblib.load('failure_prediction_model.pkl')
# Step 3: Define function to preprocess logs for anomaly detection
def preprocess_logs(logs):
logs['timestamp'] = pd.to_datetime(logs['timestamp'])
logs['log_message'] = logs['log_message'].str.lower() # Convert log messages to lowercase for uniformity
return logs
# Step 4: Function to detect anomalies in logs
def detect_anomaly(logs):
preprocessed_logs = preprocess_logs(logs)
results = []
for log in preprocessed_logs['log_message']:
anomaly_result = anomaly_detection(log) # Use Hugging Face pipeline for anomaly detection
results.append(anomaly_result[0]['label']) # Append label (e.g., "POSITIVE" or "NEGATIVE")
return results
# Step 5: Function to predict failures based on device metrics
def predict_failure(device_metrics):
# Convert device metrics into a numpy array for prediction
metrics_array = np.array([device_metrics['cpu_usage'], device_metrics['memory_usage'], device_metrics['error_rate']]).reshape(1, -1)
failure_prediction = failure_prediction_model.predict(metrics_array) # Use the Random Forest model for failure prediction
return failure_prediction
# Step 6: Function to process logs and predict both anomalies and failures
def process_logs_and_predict(log_file, metrics):
logs = pd.read_json(log_file) # Load logs from the uploaded JSON file
anomalies = detect_anomaly(logs) # Detect anomalies in logs
failure_pred = predict_failure(metrics) # Predict failures using device metrics
return f"Anomalies Detected: {anomalies}, Failure Prediction: {failure_pred}"
# Step 7: Set up Gradio interface for uploading logs and metrics for prediction
iface = gr.Interface(fn=process_logs_and_predict,
inputs=["file", "json"],
outputs="text",
title="Cisco Device Monitoring",
description="Upload log files to detect anomalies and predict potential device failures.")
# Launch the Gradio interface
iface.launch()