Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,52 +6,74 @@ import numpy as np
|
|
6 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
7 |
from sklearn.ensemble import RandomForestClassifier
|
8 |
import joblib
|
|
|
9 |
|
10 |
-
#
|
11 |
-
#
|
12 |
tokenizer = AutoTokenizer.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
|
13 |
model = AutoModelForSequenceClassification.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
|
14 |
-
|
15 |
-
# Define pipeline for anomaly detection using the loaded model and tokenizer
|
16 |
anomaly_detection = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
17 |
|
18 |
-
# Load the Random Forest model for failure prediction
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def preprocess_logs(logs):
|
23 |
logs['timestamp'] = pd.to_datetime(logs['timestamp'])
|
24 |
-
logs['log_message'] = logs['log_message'].str.lower()
|
25 |
return logs
|
26 |
|
27 |
-
# Function to detect anomalies
|
28 |
def detect_anomaly(logs):
|
29 |
preprocessed_logs = preprocess_logs(logs)
|
30 |
results = []
|
31 |
for log in preprocessed_logs['log_message']:
|
32 |
-
anomaly_result = anomaly_detection(log)
|
33 |
-
results.append(anomaly_result[0]['label']) #
|
34 |
return results
|
35 |
|
36 |
-
# Function to predict failures based on
|
37 |
def predict_failure(device_metrics):
|
|
|
38 |
metrics_array = np.array([device_metrics['cpu_usage'], device_metrics['memory_usage'], device_metrics['error_rate']]).reshape(1, -1)
|
39 |
-
failure_prediction = failure_prediction_model.predict(metrics_array)
|
40 |
return failure_prediction
|
41 |
|
42 |
-
#
|
43 |
def process_logs_and_predict(log_file, metrics):
|
44 |
-
logs = pd.read_json(log_file)
|
45 |
-
anomalies = detect_anomaly(logs)
|
46 |
-
failure_pred = predict_failure(metrics)
|
47 |
-
|
48 |
return f"Anomalies Detected: {anomalies}, Failure Prediction: {failure_pred}"
|
49 |
|
50 |
-
# Set up Gradio interface for
|
51 |
iface = gr.Interface(fn=process_logs_and_predict,
|
52 |
inputs=["file", "json"],
|
53 |
outputs="text",
|
54 |
title="Cisco Device Monitoring",
|
55 |
description="Upload log files to detect anomalies and predict potential device failures.")
|
56 |
|
|
|
57 |
iface.launch()
|
|
|
6 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
7 |
from sklearn.ensemble import RandomForestClassifier
|
8 |
import joblib
|
9 |
+
import os
|
10 |
|
11 |
+
# Step 1: Load Hugging Face model for anomaly detection
|
12 |
+
# Using the "huggingface-course/distilbert-base-uncased-finetuned-imdb" model
|
13 |
tokenizer = AutoTokenizer.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
|
14 |
model = AutoModelForSequenceClassification.from_pretrained("huggingface-course/distilbert-base-uncased-finetuned-imdb")
|
|
|
|
|
15 |
anomaly_detection = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
16 |
|
17 |
+
# Step 2: Train or Load the Random Forest model for failure prediction
|
18 |
+
if not os.path.exists('failure_prediction_model.pkl'):
|
19 |
+
# Sample data (replace this with real Cisco device metrics data)
|
20 |
+
data = pd.DataFrame({
|
21 |
+
'cpu_usage': [10, 20, 15, 35, 55],
|
22 |
+
'memory_usage': [30, 60, 45, 50, 80],
|
23 |
+
'error_rate': [0, 1, 0, 2, 5],
|
24 |
+
'failure': [0, 1, 0, 1, 1] # 0 = no failure, 1 = failure
|
25 |
+
})
|
26 |
+
|
27 |
+
# Features and target
|
28 |
+
X = data[['cpu_usage', 'memory_usage', 'error_rate']]
|
29 |
+
y = data['failure']
|
30 |
+
|
31 |
+
# Train the Random Forest model
|
32 |
+
failure_prediction_model = RandomForestClassifier(n_estimators=100, random_state=42)
|
33 |
+
failure_prediction_model.fit(X, y)
|
34 |
|
35 |
+
# Save the model for future use
|
36 |
+
joblib.dump(failure_prediction_model, 'failure_prediction_model.pkl')
|
37 |
+
else:
|
38 |
+
# Load the trained model from file
|
39 |
+
failure_prediction_model = joblib.load('failure_prediction_model.pkl')
|
40 |
+
|
41 |
+
# Step 3: Define function to preprocess logs for anomaly detection
|
42 |
def preprocess_logs(logs):
|
43 |
logs['timestamp'] = pd.to_datetime(logs['timestamp'])
|
44 |
+
logs['log_message'] = logs['log_message'].str.lower() # Convert log messages to lowercase for uniformity
|
45 |
return logs
|
46 |
|
47 |
+
# Step 4: Function to detect anomalies in logs
|
48 |
def detect_anomaly(logs):
|
49 |
preprocessed_logs = preprocess_logs(logs)
|
50 |
results = []
|
51 |
for log in preprocessed_logs['log_message']:
|
52 |
+
anomaly_result = anomaly_detection(log) # Use Hugging Face pipeline for anomaly detection
|
53 |
+
results.append(anomaly_result[0]['label']) # Append label (e.g., "POSITIVE" or "NEGATIVE")
|
54 |
return results
|
55 |
|
56 |
+
# Step 5: Function to predict failures based on device metrics
|
57 |
def predict_failure(device_metrics):
|
58 |
+
# Convert device metrics into a numpy array for prediction
|
59 |
metrics_array = np.array([device_metrics['cpu_usage'], device_metrics['memory_usage'], device_metrics['error_rate']]).reshape(1, -1)
|
60 |
+
failure_prediction = failure_prediction_model.predict(metrics_array) # Use the Random Forest model for failure prediction
|
61 |
return failure_prediction
|
62 |
|
63 |
+
# Step 6: Function to process logs and predict both anomalies and failures
|
64 |
def process_logs_and_predict(log_file, metrics):
|
65 |
+
logs = pd.read_json(log_file) # Load logs from the uploaded JSON file
|
66 |
+
anomalies = detect_anomaly(logs) # Detect anomalies in logs
|
67 |
+
failure_pred = predict_failure(metrics) # Predict failures using device metrics
|
68 |
+
|
69 |
return f"Anomalies Detected: {anomalies}, Failure Prediction: {failure_pred}"
|
70 |
|
71 |
+
# Step 7: Set up Gradio interface for uploading logs and metrics for prediction
|
72 |
iface = gr.Interface(fn=process_logs_and_predict,
|
73 |
inputs=["file", "json"],
|
74 |
outputs="text",
|
75 |
title="Cisco Device Monitoring",
|
76 |
description="Upload log files to detect anomalies and predict potential device failures.")
|
77 |
|
78 |
+
# Launch the Gradio interface
|
79 |
iface.launch()
|