Spaces:
Runtime error
Runtime error
demo interface changes
#1
by
niulx
- opened
- .gitattributes +0 -1
- app.py +268 -221
- img2.png +0 -3
- img3.png +0 -0
- img4.png +0 -0
- main.py +6 -16
- requirements.txt +3 -9
- segment.py +11 -21
- utils.py +1 -0
.gitattributes
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
img2.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
|
|
1 |
import os
|
2 |
import copy
|
3 |
-
#import spaces
|
4 |
-
from main import run_main
|
5 |
from PIL import Image
|
6 |
import matplotlib
|
7 |
import numpy as np
|
@@ -11,12 +10,10 @@ from utils_mask import process_mask_to_follow_priority, mask_union, visualize_ma
|
|
11 |
from pathlib import Path
|
12 |
from PIL import Image
|
13 |
from functools import partial
|
14 |
-
import
|
15 |
-
|
16 |
LENGTH=512 #length of the square area displaying/editing images
|
17 |
TRANSPARENCY = 150 # transparency of the mask in display
|
18 |
|
19 |
-
|
20 |
def add_mask(mask_np_list_updated, mask_label_list):
|
21 |
mask_new = np.zeros_like(mask_np_list_updated[0])
|
22 |
mask_np_list_updated.append(mask_new)
|
@@ -35,25 +32,89 @@ def create_segmentation(mask_np_list):
|
|
35 |
segmentation = Image.fromarray(np.uint8(segmentation*255))
|
36 |
return segmentation
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
def run_segmentation_wrapper(image):
|
41 |
try:
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
segmentation = create_segmentation(mask_np_list)
|
46 |
print("!!", len(mask_np_list))
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
return
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
|
59 |
backimg_solid_np = np.array(backimg)
|
@@ -65,8 +126,11 @@ def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
|
|
65 |
bimg_np = np.array(bimg)
|
66 |
mask_np = mask_np[:,:,np.newaxis]
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
70 |
|
71 |
def show_segmentation(image, segmentation, flag):
|
72 |
if flag is False:
|
@@ -97,32 +161,17 @@ def edit_mask_add(canvas, image, idx, mask_np_list):
|
|
97 |
return mask_np_list_updated, image_edit
|
98 |
|
99 |
def slider_release(index, image, mask_np_list_updated, mask_label_list):
|
100 |
-
|
101 |
-
|
|
|
102 |
else:
|
103 |
mask_np = mask_np_list_updated[index]
|
104 |
mask_label = mask_label_list[index]
|
105 |
-
index = mask_label.rfind('-')
|
106 |
-
mask_label = mask_label[:index]
|
107 |
-
if mask_label == 'handbag':
|
108 |
-
mask_prompt = "white handbag"
|
109 |
-
elif mask_label == 'person':
|
110 |
-
mask_prompt = "little boy"
|
111 |
-
elif mask_label == 'wall-other-merged':
|
112 |
-
mask_prompt = "white wall"
|
113 |
-
elif mask_label == 'table-merged':
|
114 |
-
mask_prompt = "table"
|
115 |
-
else:
|
116 |
-
mask_prompt = mask_label
|
117 |
segmentation = create_segmentation(mask_np_list_updated)
|
118 |
new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY)
|
119 |
-
|
120 |
-
return new_image, mask_label, mask_prompt
|
121 |
-
def image_change():
|
122 |
-
return gr.Slider(value = 0, minimum=0, maximum=1, step=1, visible=False)
|
123 |
|
124 |
def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
|
125 |
-
print(mask_np_list_updated)
|
126 |
try:
|
127 |
assert np.all(sum(mask_np_list_updated)==1)
|
128 |
except:
|
@@ -137,7 +186,6 @@ def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder="examp
|
|
137 |
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
138 |
|
139 |
def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
|
140 |
-
print(mask_np_list_updated)
|
141 |
try:
|
142 |
assert np.all(sum(mask_np_list_updated)==1)
|
143 |
except:
|
@@ -149,30 +197,12 @@ def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder="examp
|
|
149 |
savepath = os.path.join(input_folder, "seg_edited.png")
|
150 |
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
def button_clickable(is_clickable):
|
155 |
-
return gr.Button(interactive=is_clickable)
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
def load_pil_img():
|
160 |
-
from PIL import Image
|
161 |
-
return Image.open("example_tmp/text/out_text_0.png")
|
162 |
-
|
163 |
-
def change_image(img):
|
164 |
-
return None
|
165 |
-
|
166 |
-
|
167 |
import shutil
|
168 |
if os.path.isdir("./example_tmp"):
|
169 |
shutil.rmtree("./example_tmp")
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
from segment import run_segmentation
|
175 |
-
|
176 |
with gr.Blocks() as demo:
|
177 |
image = gr.State() # store mask
|
178 |
image_loaded = gr.State()
|
@@ -188,186 +218,203 @@ with gr.Blocks() as demo:
|
|
188 |
with gr.Row():
|
189 |
gr.Markdown("""# D-Edit""")
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
# mask_np_list_updated.value = copy.deepcopy(mask_np_list.value) #!!
|
207 |
mask_np_list_updated = mask_np_list
|
208 |
-
gr.
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
221 |
num_tokens_global = num_tokens
|
222 |
-
embedding_learning_rate = gr.Textbox(value="0.
|
223 |
-
max_emb_train_steps = gr.Number(value="
|
|
|
|
|
|
|
224 |
|
225 |
-
|
226 |
-
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
diffusion_model_learning_rate ,
|
240 |
-
max_diffusion_train_steps,
|
241 |
-
train_batch_size,
|
242 |
-
gradient_accumulation_steps,
|
243 |
-
):
|
244 |
-
try:
|
245 |
run_optimization = partial(
|
246 |
-
run_main,
|
247 |
-
mask_np_list=mask_np_list,
|
248 |
-
mask_label_list=mask_label_list,
|
249 |
-
image_gt=np.array(image),
|
250 |
num_tokens=int(num_tokens),
|
251 |
embedding_learning_rate = float(embedding_learning_rate),
|
252 |
-
max_emb_train_steps =
|
253 |
diffusion_model_learning_rate= float(diffusion_model_learning_rate),
|
254 |
-
max_diffusion_train_steps =
|
255 |
train_batch_size=int(train_batch_size),
|
256 |
gradient_accumulation_steps=int(gradient_accumulation_steps)
|
257 |
)
|
258 |
run_optimization()
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
edge_thickness = gr.Number(value="10", label="Editing: Edge thickness", interactive= True )
|
282 |
strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
313 |
)
|
314 |
-
run_edit_text()
|
315 |
-
gr.Info('Image editing completed.')
|
316 |
-
return load_pil_img()
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
def run_total_wrapper(mask_np_list, mask_label_list, image_loaded, opt_flag, num_tokens, embedding_learning_rate, max_emb_train_steps, diffusion_model_learning_rate, max_diffusion_train_steps, train_batch_size, gradient_accumulation_steps, num_tokens_global, guidance_scale, num_sampling_steps, strength, edge_thickness, tgt_prompt, slider2):
|
321 |
-
result_info = run_optimization_wrapper(mask_np_list, mask_label_list, image_loaded, opt_flag, num_tokens, embedding_learning_rate, max_emb_train_steps, diffusion_model_learning_rate, max_diffusion_train_steps, train_batch_size, gradient_accumulation_steps)
|
322 |
-
canvas_text_edit = run_edit_text_wrapper(mask_np_list, mask_label_list, image_loaded, num_tokens_global, guidance_scale, num_sampling_steps, strength, edge_thickness, tgt_prompt, slider2)
|
323 |
-
return result_info, canvas_text_edit
|
324 |
-
|
325 |
-
|
326 |
-
add_button.click(
|
327 |
-
run_total_wrapper,
|
328 |
-
inputs=[
|
329 |
-
mask_np_list,
|
330 |
-
mask_label_list,
|
331 |
-
image_loaded,
|
332 |
-
opt_flag,
|
333 |
-
num_tokens,
|
334 |
-
embedding_learning_rate,
|
335 |
-
max_emb_train_steps,
|
336 |
-
diffusion_model_learning_rate,
|
337 |
-
max_diffusion_train_steps,
|
338 |
-
train_batch_size,
|
339 |
-
gradient_accumulation_steps,
|
340 |
-
num_tokens_global,
|
341 |
-
guidance_scale,
|
342 |
-
num_sampling_steps,
|
343 |
-
strength,
|
344 |
-
edge_thickness,
|
345 |
-
tgt_prompt,
|
346 |
-
slider2
|
347 |
-
],
|
348 |
-
outputs=[result_info, canvas_text_edit],
|
349 |
-
)
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
canvas.upload(image_change, inputs=[], outputs=[slider])
|
355 |
-
|
356 |
-
slider.release(slider_release,
|
357 |
-
inputs = [slider, image_loaded, mask_np_list_updated, mask_label_list],
|
358 |
-
outputs= [canvas, label,tgt_prompt])
|
359 |
-
|
360 |
-
slider.change(
|
361 |
-
lambda x: x,
|
362 |
-
inputs=[slider],
|
363 |
-
outputs=[slider2]
|
364 |
-
)
|
365 |
-
|
366 |
|
367 |
-
segment_button.click(run_segmentation_wrapper,
|
368 |
-
[canvas] ,
|
369 |
-
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas, slider, slider2, result_info0] )
|
370 |
|
371 |
|
372 |
|
373 |
-
demo.queue().launch(debug=True)
|
|
|
1 |
+
|
2 |
import os
|
3 |
import copy
|
|
|
|
|
4 |
from PIL import Image
|
5 |
import matplotlib
|
6 |
import numpy as np
|
|
|
10 |
from pathlib import Path
|
11 |
from PIL import Image
|
12 |
from functools import partial
|
13 |
+
from main import run_main
|
|
|
14 |
LENGTH=512 #length of the square area displaying/editing images
|
15 |
TRANSPARENCY = 150 # transparency of the mask in display
|
16 |
|
|
|
17 |
def add_mask(mask_np_list_updated, mask_label_list):
|
18 |
mask_new = np.zeros_like(mask_np_list_updated[0])
|
19 |
mask_np_list_updated.append(mask_new)
|
|
|
32 |
segmentation = Image.fromarray(np.uint8(segmentation*255))
|
33 |
return segmentation
|
34 |
|
35 |
+
def load_mask_ui(input_folder="example_tmp",load_edit = False):
|
36 |
+
if not load_edit:
|
37 |
+
mask_list, mask_label_list = load_mask(input_folder)
|
38 |
+
else:
|
39 |
+
mask_list, mask_label_list = load_mask_edit(input_folder)
|
40 |
+
|
41 |
+
mask_np_list = []
|
42 |
+
for m in mask_list:
|
43 |
+
mask_np_list. append( m.cpu().numpy())
|
44 |
+
|
45 |
+
return mask_np_list, mask_label_list
|
46 |
|
47 |
+
def load_image_ui(load_edit, input_folder="example_tmp"):
|
|
|
48 |
try:
|
49 |
+
for img_path in Path(input_folder).iterdir():
|
50 |
+
if img_path.name in ["img_512.png"]:
|
51 |
+
image = Image.open(img_path)
|
52 |
+
mask_np_list, mask_label_list = load_mask_ui(input_folder, load_edit = load_edit)
|
53 |
+
image = image.convert('RGB')
|
54 |
segmentation = create_segmentation(mask_np_list)
|
55 |
print("!!", len(mask_np_list))
|
56 |
+
return image, segmentation, mask_np_list, mask_label_list, image
|
57 |
+
except:
|
58 |
+
print("Image folder invalid: The folder should contain image.png")
|
59 |
+
return None, None, None, None, None
|
60 |
+
|
61 |
+
# def run_edit_text(
|
62 |
+
# num_tokens,
|
63 |
+
# num_sampling_steps,
|
64 |
+
# strength,
|
65 |
+
# edge_thickness,
|
66 |
+
# tgt_prompt,
|
67 |
+
# tgt_idx,
|
68 |
+
# guidance_scale,
|
69 |
+
# input_folder="example_tmp"
|
70 |
+
# ):
|
71 |
+
# subprocess.run(["python",
|
72 |
+
# "main.py" ,
|
73 |
+
# "--text=True",
|
74 |
+
# "--name={}".format(input_folder),
|
75 |
+
# "--dpm={}".format("sd"),
|
76 |
+
# "--resolution={}".format(512),
|
77 |
+
# "--load_trained",
|
78 |
+
# "--num_tokens={}".format(num_tokens),
|
79 |
+
# "--seed={}".format(2024),
|
80 |
+
# "--guidance_scale={}".format(guidance_scale),
|
81 |
+
# "--num_sampling_step={}".format(num_sampling_steps),
|
82 |
+
# "--strength={}".format(strength),
|
83 |
+
# "--edge_thickness={}".format(edge_thickness),
|
84 |
+
# "--num_imgs={}".format(2),
|
85 |
+
# "--tgt_prompt={}".format(tgt_prompt) ,
|
86 |
+
# "--tgt_index={}".format(tgt_idx)
|
87 |
+
# ])
|
88 |
+
|
89 |
+
# return Image.open(os.path.join(input_folder, "text", "out_text_0.png"))
|
90 |
+
|
91 |
+
|
92 |
+
# def run_optimization(
|
93 |
+
# num_tokens,
|
94 |
+
# embedding_learning_rate,
|
95 |
+
# max_emb_train_steps,
|
96 |
+
# diffusion_model_learning_rate,
|
97 |
+
# max_diffusion_train_steps,
|
98 |
+
# train_batch_size,
|
99 |
+
# gradient_accumulation_steps,
|
100 |
+
# input_folder = "example_tmp"
|
101 |
+
# ):
|
102 |
+
# subprocess.run(["python",
|
103 |
+
# "main.py" ,
|
104 |
+
# "--name={}".format(input_folder),
|
105 |
+
# "--dpm={}".format("sd"),
|
106 |
+
# "--resolution={}".format(512),
|
107 |
+
# "--num_tokens={}".format(num_tokens),
|
108 |
+
# "--embedding_learning_rate={}".format(embedding_learning_rate),
|
109 |
+
# "--diffusion_model_learning_rate={}".format(diffusion_model_learning_rate),
|
110 |
+
# "--max_emb_train_steps={}".format(max_emb_train_steps),
|
111 |
+
# "--max_diffusion_train_steps={}".format(max_diffusion_train_steps),
|
112 |
+
# "--train_batch_size={}".format(train_batch_size),
|
113 |
+
# "--gradient_accumulation_steps={}".format(gradient_accumulation_steps)
|
114 |
+
|
115 |
+
# ])
|
116 |
+
# return
|
117 |
+
|
118 |
|
119 |
def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
|
120 |
backimg_solid_np = np.array(backimg)
|
|
|
126 |
bimg_np = np.array(bimg)
|
127 |
mask_np = mask_np[:,:,np.newaxis]
|
128 |
|
129 |
+
try:
|
130 |
+
new_img_np = bimg_np*mask_np + (1-mask_np)* backimg_solid_np
|
131 |
+
return Image.fromarray(new_img_np)
|
132 |
+
except:
|
133 |
+
import pdb; pdb.set_trace()
|
134 |
|
135 |
def show_segmentation(image, segmentation, flag):
|
136 |
if flag is False:
|
|
|
161 |
return mask_np_list_updated, image_edit
|
162 |
|
163 |
def slider_release(index, image, mask_np_list_updated, mask_label_list):
|
164 |
+
|
165 |
+
if index > len(mask_np_list_updated):
|
166 |
+
return image, "out of range"
|
167 |
else:
|
168 |
mask_np = mask_np_list_updated[index]
|
169 |
mask_label = mask_label_list[index]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
segmentation = create_segmentation(mask_np_list_updated)
|
171 |
new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY)
|
172 |
+
return new_image, mask_label
|
|
|
|
|
|
|
173 |
|
174 |
def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
|
|
|
175 |
try:
|
176 |
assert np.all(sum(mask_np_list_updated)==1)
|
177 |
except:
|
|
|
186 |
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
187 |
|
188 |
def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder="example_tmp"):
|
|
|
189 |
try:
|
190 |
assert np.all(sum(mask_np_list_updated)==1)
|
191 |
except:
|
|
|
197 |
savepath = os.path.join(input_folder, "seg_edited.png")
|
198 |
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
199 |
|
200 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
import shutil
|
202 |
if os.path.isdir("./example_tmp"):
|
203 |
shutil.rmtree("./example_tmp")
|
204 |
|
|
|
|
|
|
|
205 |
from segment import run_segmentation
|
|
|
206 |
with gr.Blocks() as demo:
|
207 |
image = gr.State() # store mask
|
208 |
image_loaded = gr.State()
|
|
|
218 |
with gr.Row():
|
219 |
gr.Markdown("""# D-Edit""")
|
220 |
|
221 |
+
with gr.Tab(label="1 Edit mask"):
|
222 |
+
with gr.Row():
|
223 |
+
with gr.Column():
|
224 |
+
canvas = gr.Image(value = "./img.png", type="numpy", label="Draw Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
225 |
+
|
226 |
+
segment_button = gr.Button("1.1 Run segmentation")
|
227 |
+
segment_button.click(run_segmentation,
|
228 |
+
[canvas, block_flag] ,
|
229 |
+
[block_flag] )
|
230 |
+
|
231 |
+
text_button = gr.Button("Waiting 1.1 to complete")
|
232 |
+
text_button.click(load_image_ui,
|
233 |
+
[ false] ,
|
234 |
+
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
235 |
+
|
236 |
+
load_edit_button = gr.Button("Waiting 1.1 to complete")
|
237 |
+
load_edit_button.click(load_image_ui,
|
238 |
+
[ true] ,
|
239 |
+
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
240 |
+
|
241 |
+
show_segment = gr.Checkbox(label = "Waiting 1.1 to complete")
|
242 |
+
flag = gr.State(False)
|
243 |
+
show_segment.select(show_segmentation,
|
244 |
+
[image_loaded, segmentation, flag],
|
245 |
+
[canvas, flag])
|
246 |
+
def show_more_buttons():
|
247 |
+
return gr.Button("1.2 Load original masks"), gr.Button("1.2 Load edited masks") , gr.Checkbox(label = "Show Segmentation")
|
248 |
+
block_flag.change(show_more_buttons, [], [text_button,load_edit_button,show_segment ])
|
249 |
+
|
250 |
+
|
251 |
# mask_np_list_updated.value = copy.deepcopy(mask_np_list.value) #!!
|
252 |
mask_np_list_updated = mask_np_list
|
253 |
+
with gr.Column():
|
254 |
+
gr.Markdown("""<p style="text-align: center; font-size: 20px">Edit Mask (Optional)</p>""")
|
255 |
+
slider = gr.Slider(0, 20, step=1, interactive=True)
|
256 |
+
label = gr.Textbox()
|
257 |
+
slider.release(slider_release,
|
258 |
+
inputs = [slider, image_loaded, mask_np_list_updated, mask_label_list],
|
259 |
+
outputs= [canvas, label]
|
260 |
+
)
|
261 |
+
add_button = gr.Button("Add")
|
262 |
+
add_button.click( edit_mask_add,
|
263 |
+
[canvas, image_loaded, slider, mask_np_list_updated] ,
|
264 |
+
[mask_np_list_updated, canvas]
|
265 |
+
)
|
266 |
|
267 |
+
save_button2 = gr.Button("Set and Save as edited masks")
|
268 |
+
save_button2.click( save_as_edit_mask,
|
269 |
+
[mask_np_list_updated, mask_label_list] ,
|
270 |
+
[] )
|
271 |
+
|
272 |
+
save_button = gr.Button("Set and Save as original masks")
|
273 |
+
save_button.click( save_as_orig_mask,
|
274 |
+
[mask_np_list_updated, mask_label_list] ,
|
275 |
+
[] )
|
276 |
+
|
277 |
+
back_button = gr.Button("Back to current seg")
|
278 |
+
back_button.click( load_mask_ui,
|
279 |
+
[] ,
|
280 |
+
[ mask_np_list_updated,mask_label_list] )
|
281 |
+
|
282 |
+
add_mask_button = gr.Button("Add new empty mask")
|
283 |
+
add_mask_button.click(add_mask,
|
284 |
+
[mask_np_list_updated, mask_label_list] ,
|
285 |
+
[mask_np_list_updated, mask_label_list] )
|
286 |
+
|
287 |
+
with gr.Tab(label="2 Optimization"):
|
288 |
+
with gr.Row():
|
289 |
+
with gr.Column():
|
290 |
+
|
291 |
+
txt_box = gr.Textbox("Click to start optimization...", interactive = False)
|
292 |
+
|
293 |
+
opt_flag = gr.State(0)
|
294 |
+
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
295 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
296 |
num_tokens_global = num_tokens
|
297 |
+
embedding_learning_rate = gr.Textbox(value="0.0001", label="Embedding optimization: Learning rate", interactive= True )
|
298 |
+
max_emb_train_steps = gr.Number(value="200", label="embedding optimization: Training steps", interactive= True )
|
299 |
+
|
300 |
+
diffusion_model_learning_rate = gr.Textbox(value="0.00005", label="UNet Optimization: Learning rate", interactive= True )
|
301 |
+
max_diffusion_train_steps = gr.Number(value="200", label="UNet Optimization: Learning rate: Training steps", interactive= True )
|
302 |
|
303 |
+
train_batch_size = gr.Number(value="5", label="Batch size", interactive= True )
|
304 |
+
gradient_accumulation_steps=gr.Number(value="5", label="Gradient accumulation", interactive= True )
|
305 |
|
306 |
+
add_button = gr.Button("Run optimization")
|
307 |
+
def run_optimization_wrapper (
|
308 |
+
opt_flag,
|
309 |
+
num_tokens,
|
310 |
+
embedding_learning_rate ,
|
311 |
+
max_emb_train_steps ,
|
312 |
+
diffusion_model_learning_rate ,
|
313 |
+
max_diffusion_train_steps,
|
314 |
+
train_batch_size,
|
315 |
+
gradient_accumulation_steps
|
316 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
run_optimization = partial(
|
318 |
+
run_main,
|
|
|
|
|
|
|
319 |
num_tokens=int(num_tokens),
|
320 |
embedding_learning_rate = float(embedding_learning_rate),
|
321 |
+
max_emb_train_steps = int(max_emb_train_steps),
|
322 |
diffusion_model_learning_rate= float(diffusion_model_learning_rate),
|
323 |
+
max_diffusion_train_steps = int(max_diffusion_train_steps),
|
324 |
train_batch_size=int(train_batch_size),
|
325 |
gradient_accumulation_steps=int(gradient_accumulation_steps)
|
326 |
)
|
327 |
run_optimization()
|
328 |
+
return opt_flag+1
|
329 |
+
|
330 |
+
add_button.click(run_optimization_wrapper,
|
331 |
+
inputs = [
|
332 |
+
opt_flag,
|
333 |
+
num_tokens,
|
334 |
+
embedding_learning_rate ,
|
335 |
+
max_emb_train_steps ,
|
336 |
+
diffusion_model_learning_rate ,
|
337 |
+
max_diffusion_train_steps,
|
338 |
+
train_batch_size,
|
339 |
+
gradient_accumulation_steps
|
340 |
+
],
|
341 |
+
outputs = [opt_flag]
|
342 |
+
)
|
343 |
+
|
344 |
+
def change_text(txt_box):
|
345 |
+
return gr.Textbox("Optimization Finished!", interactive = False)
|
346 |
+
def change_text2(txt_box):
|
347 |
+
return gr.Textbox("Start optimization, check logs for progress...", interactive = False)
|
348 |
+
add_button.click(change_text2, txt_box, txt_box)
|
349 |
+
opt_flag.change(change_text, txt_box, txt_box)
|
350 |
+
|
351 |
+
with gr.Tab(label="3 Editing"):
|
352 |
+
with gr.Tab(label="3.1 Text-based editing"):
|
353 |
+
|
354 |
+
with gr.Row():
|
355 |
+
with gr.Column():
|
356 |
+
canvas_text_edit = gr.Image(value = None, type = "pil", label="Editing results", show_label=True)
|
357 |
+
# canvas_text_edit = gr.Gallery(label = "Edited results")
|
358 |
+
|
359 |
+
with gr.Column():
|
360 |
+
gr.Markdown("""<p style="text-align: center; font-size: 20px">Editing setting (SD)</p>""")
|
361 |
+
|
362 |
+
tgt_prompt = gr.Textbox(value="White bag", label="Editing: Text prompt", interactive= True )
|
363 |
+
tgt_index = gr.Number(value="0", label="Editing: Object index", interactive= True )
|
364 |
+
guidance_scale = gr.Textbox(value="6", label="Editing: CFG guidance scale", interactive= True )
|
365 |
+
num_sampling_steps = gr.Number(value="50", label="Editing: Sampling steps", interactive= True )
|
366 |
edge_thickness = gr.Number(value="10", label="Editing: Edge thickness", interactive= True )
|
367 |
strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
|
368 |
+
|
369 |
+
add_button = gr.Button("Run Editing")
|
370 |
+
def run_edit_text_wrapper(
|
371 |
+
num_tokens,
|
372 |
+
guidance_scale,
|
373 |
+
num_sampling_steps ,
|
374 |
+
strength ,
|
375 |
+
edge_thickness,
|
376 |
+
tgt_prompt ,
|
377 |
+
tgt_index
|
378 |
+
):
|
379 |
+
|
380 |
+
run_edit_text = partial(
|
381 |
+
run_main,
|
382 |
+
load_trained=True,
|
383 |
+
text=True,
|
384 |
+
num_tokens = int(num_tokens_global.value),
|
385 |
+
guidance_scale = float(guidance_scale),
|
386 |
+
num_sampling_steps = int(num_sampling_steps),
|
387 |
+
strength = float(strength),
|
388 |
+
edge_thickness = int(edge_thickness),
|
389 |
+
num_imgs = 1,
|
390 |
+
tgt_prompt = tgt_prompt,
|
391 |
+
tgt_index = int(tgt_index)
|
392 |
+
)
|
393 |
+
return run_edit_text()
|
394 |
|
395 |
+
add_button.click(run_edit_text_wrapper,
|
396 |
+
inputs = [num_tokens_global,
|
397 |
+
guidance_scale,
|
398 |
+
num_sampling_steps,
|
399 |
+
strength ,
|
400 |
+
edge_thickness,
|
401 |
+
tgt_prompt ,
|
402 |
+
tgt_index
|
403 |
+
],
|
404 |
+
outputs = [canvas_text_edit]
|
405 |
+
)
|
406 |
+
|
407 |
+
def load_pil_img():
|
408 |
+
from PIL import Image
|
409 |
+
return Image.open("example_tmp/text/out_text_0.png")
|
410 |
+
|
411 |
+
load_button = gr.Button("Load results")
|
412 |
+
load_button.click(load_pil_img,
|
413 |
+
inputs = [],
|
414 |
+
outputs = [canvas_text_edit]
|
415 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
|
|
|
|
|
|
417 |
|
418 |
|
419 |
|
420 |
+
demo.queue().launch(share=True, debug=True)
|
img2.png
DELETED
Git LFS Details
|
img3.png
DELETED
Binary file (259 kB)
|
|
img4.png
DELETED
Binary file (45.9 kB)
|
|
main.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
import spaces
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
import argparse
|
@@ -10,14 +9,9 @@ from utils import load_image, load_mask, load_mask_edit
|
|
10 |
from utils_mask import process_mask_move_torch, process_mask_remove_torch, mask_union_torch, mask_substract_torch, create_outer_edge_mask_torch
|
11 |
from utils_mask import check_mask_overlap_torch, check_cover_all_torch, visualize_mask_list, get_mask_difference_torch, save_mask_list_to_npys
|
12 |
|
13 |
-
@spaces.GPU(duration=45)
|
14 |
-
|
15 |
def run_main(
|
16 |
name="example_tmp",
|
17 |
name_2=None,
|
18 |
-
mask_np_list=None,
|
19 |
-
mask_label_list=None,
|
20 |
-
image_gt=None,
|
21 |
dpm="sd",
|
22 |
resolution=512,
|
23 |
seed=42,
|
@@ -77,17 +71,13 @@ def run_main(
|
|
77 |
base_output_folder = "."
|
78 |
|
79 |
input_folder = os.path.join(base_input_folder, name)
|
80 |
-
|
81 |
-
|
82 |
-
mask = torch.from_numpy(mask_np.astype(np.uint8))
|
83 |
-
mask_list.append(mask)
|
84 |
-
|
85 |
-
#mask_list, mask_label_list = load_mask(input_folder)
|
86 |
assert mask_list[0].shape[0] == resolution, "Segmentation should be done on size {}".format(resolution)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
if image:
|
93 |
input_folder_2 = os.path.join(base_input_folder, name_2)
|
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import argparse
|
|
|
9 |
from utils_mask import process_mask_move_torch, process_mask_remove_torch, mask_union_torch, mask_substract_torch, create_outer_edge_mask_torch
|
10 |
from utils_mask import check_mask_overlap_torch, check_cover_all_torch, visualize_mask_list, get_mask_difference_torch, save_mask_list_to_npys
|
11 |
|
|
|
|
|
12 |
def run_main(
|
13 |
name="example_tmp",
|
14 |
name_2=None,
|
|
|
|
|
|
|
15 |
dpm="sd",
|
16 |
resolution=512,
|
17 |
seed=42,
|
|
|
71 |
base_output_folder = "."
|
72 |
|
73 |
input_folder = os.path.join(base_input_folder, name)
|
74 |
+
|
75 |
+
mask_list, mask_label_list = load_mask(input_folder)
|
|
|
|
|
|
|
|
|
76 |
assert mask_list[0].shape[0] == resolution, "Segmentation should be done on size {}".format(resolution)
|
77 |
+
try:
|
78 |
+
image_gt = load_image(os.path.join(input_folder, "img_{}.png".format(resolution) ), size = resolution)
|
79 |
+
except:
|
80 |
+
image_gt = load_image(os.path.join(input_folder, "img_{}.jpg".format(resolution) ), size = resolution)
|
81 |
|
82 |
if image:
|
83 |
input_folder_2 = os.path.join(base_input_folder, name_2)
|
requirements.txt
CHANGED
@@ -1,17 +1,11 @@
|
|
1 |
-
gradio==4.36.0
|
2 |
-
torch
|
3 |
-
torchvision
|
4 |
-
huggingface_hub
|
5 |
-
|
6 |
-
accelerate==0.27.2
|
7 |
-
diffusers==0.30.2
|
8 |
-
numpy==1.26.4
|
9 |
torch==2.2.0
|
10 |
torchvision==0.17.0
|
11 |
transformers==4.37.2
|
|
|
|
|
12 |
xformers==0.0.24
|
|
|
13 |
scipy
|
14 |
-
setuptools
|
15 |
tqdm
|
16 |
numpy
|
17 |
safetensors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
torch==2.2.0
|
2 |
torchvision==0.17.0
|
3 |
transformers==4.37.2
|
4 |
+
accelerate==0.23.0
|
5 |
+
gradio==3.41.1
|
6 |
xformers==0.0.24
|
7 |
+
diffusers==0.26.3
|
8 |
scipy
|
|
|
9 |
tqdm
|
10 |
numpy
|
11 |
safetensors
|
segment.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
|
2 |
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
|
3 |
from PIL import Image
|
4 |
-
import spaces
|
5 |
import torch
|
6 |
from collections import defaultdict
|
7 |
import matplotlib.pyplot as plt
|
@@ -11,8 +10,6 @@ import os
|
|
11 |
import numpy as np
|
12 |
import argparse
|
13 |
import matplotlib
|
14 |
-
import gradio as gr
|
15 |
-
|
16 |
|
17 |
def load_image(image_path, left=0, right=0, top=0, bottom=0, size = 512):
|
18 |
if type(image_path) is str:
|
@@ -47,18 +44,14 @@ def draw_panoptic_segmentation(segmentation, segments_info,save_folder=None, nos
|
|
47 |
instances_counter = defaultdict(int)
|
48 |
handles = []
|
49 |
label_list = []
|
50 |
-
|
51 |
-
mask_np_list = []
|
52 |
-
|
53 |
if not noseg:
|
54 |
if torch.min(segmentation) == 0:
|
55 |
mask = segmentation==0
|
56 |
mask = mask.cpu().detach().numpy() # [512,512] bool
|
57 |
-
print(mask.shape)
|
58 |
segment_label = "rest"
|
|
|
59 |
color = viridis(0)
|
60 |
label = f"{segment_label}-{0}"
|
61 |
-
mask_np_list.append(mask)
|
62 |
handles.append(mpatches.Patch(color=color, label=label))
|
63 |
label_list.append(label)
|
64 |
|
@@ -68,11 +61,10 @@ def draw_panoptic_segmentation(segmentation, segments_info,save_folder=None, nos
|
|
68 |
if torch.min(segmentation) != 0:
|
69 |
segment_id -= 1
|
70 |
mask = mask.cpu().detach().numpy() # [512,512] bool
|
71 |
-
|
72 |
-
mask_np_list.append(mask)
|
73 |
segment_label = model.config.id2label[segment['label_id']]
|
74 |
instances_counter[segment['label_id']] += 1
|
75 |
-
|
76 |
color = viridis(segment_id)
|
77 |
|
78 |
label = f"{segment_label}-{segment_id}"
|
@@ -80,10 +72,8 @@ def draw_panoptic_segmentation(segmentation, segments_info,save_folder=None, nos
|
|
80 |
label_list.append(label)
|
81 |
else:
|
82 |
mask = np.full(segmentation.shape, True)
|
83 |
-
print(mask.shape)
|
84 |
-
|
85 |
segment_label = "all"
|
86 |
-
|
87 |
color = viridis(0)
|
88 |
label = f"{segment_label}-{0}"
|
89 |
handles.append(mpatches.Patch(color=color, label=label))
|
@@ -95,11 +85,11 @@ def draw_panoptic_segmentation(segmentation, segments_info,save_folder=None, nos
|
|
95 |
ax.legend(handles=handles)
|
96 |
plt.savefig(os.path.join(save_folder, 'seg_init.png'), dpi=500 )
|
97 |
print("; ".join(label_list))
|
98 |
-
return mask_np_list,label_list
|
99 |
|
100 |
|
101 |
-
|
102 |
-
|
|
|
103 |
|
104 |
base_folder_path = "."
|
105 |
|
@@ -115,7 +105,7 @@ def run_segmentation(image, name="example_tmp", size = 512, noseg=False):
|
|
115 |
image =Image.fromarray(image)
|
116 |
image = image.resize((size, size))
|
117 |
os.makedirs(name, exist_ok=True)
|
118 |
-
|
119 |
inputs = processor(image, return_tensors="pt")
|
120 |
with torch.no_grad():
|
121 |
outputs = model(**inputs)
|
@@ -123,7 +113,7 @@ def run_segmentation(image, name="example_tmp", size = 512, noseg=False):
|
|
123 |
panoptic_segmentation = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
124 |
save_folder = os.path.join(base_folder_path, name)
|
125 |
os.makedirs(save_folder, exist_ok=True)
|
126 |
-
|
127 |
print("Finish segment")
|
128 |
-
|
129 |
-
return
|
|
|
1 |
|
2 |
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
|
3 |
from PIL import Image
|
|
|
4 |
import torch
|
5 |
from collections import defaultdict
|
6 |
import matplotlib.pyplot as plt
|
|
|
10 |
import numpy as np
|
11 |
import argparse
|
12 |
import matplotlib
|
|
|
|
|
13 |
|
14 |
def load_image(image_path, left=0, right=0, top=0, bottom=0, size = 512):
|
15 |
if type(image_path) is str:
|
|
|
44 |
instances_counter = defaultdict(int)
|
45 |
handles = []
|
46 |
label_list = []
|
|
|
|
|
|
|
47 |
if not noseg:
|
48 |
if torch.min(segmentation) == 0:
|
49 |
mask = segmentation==0
|
50 |
mask = mask.cpu().detach().numpy() # [512,512] bool
|
|
|
51 |
segment_label = "rest"
|
52 |
+
np.save( os.path.join(save_folder, "mask{}_{}.npy".format(0,"rest")) , mask)
|
53 |
color = viridis(0)
|
54 |
label = f"{segment_label}-{0}"
|
|
|
55 |
handles.append(mpatches.Patch(color=color, label=label))
|
56 |
label_list.append(label)
|
57 |
|
|
|
61 |
if torch.min(segmentation) != 0:
|
62 |
segment_id -= 1
|
63 |
mask = mask.cpu().detach().numpy() # [512,512] bool
|
64 |
+
|
|
|
65 |
segment_label = model.config.id2label[segment['label_id']]
|
66 |
instances_counter[segment['label_id']] += 1
|
67 |
+
np.save( os.path.join(save_folder, "mask{}_{}.npy".format(segment_id,segment_label)) , mask)
|
68 |
color = viridis(segment_id)
|
69 |
|
70 |
label = f"{segment_label}-{segment_id}"
|
|
|
72 |
label_list.append(label)
|
73 |
else:
|
74 |
mask = np.full(segmentation.shape, True)
|
|
|
|
|
75 |
segment_label = "all"
|
76 |
+
np.save( os.path.join(save_folder, "mask{}_{}.npy".format(0,"all")) , mask)
|
77 |
color = viridis(0)
|
78 |
label = f"{segment_label}-{0}"
|
79 |
handles.append(mpatches.Patch(color=color, label=label))
|
|
|
85 |
ax.legend(handles=handles)
|
86 |
plt.savefig(os.path.join(save_folder, 'seg_init.png'), dpi=500 )
|
87 |
print("; ".join(label_list))
|
|
|
88 |
|
89 |
|
90 |
+
|
91 |
+
|
92 |
+
def run_segmentation(image, block_flag, name="example_tmp", size = 512, noseg=False):
|
93 |
|
94 |
base_folder_path = "."
|
95 |
|
|
|
105 |
image =Image.fromarray(image)
|
106 |
image = image.resize((size, size))
|
107 |
os.makedirs(name, exist_ok=True)
|
108 |
+
image.save(os.path.join(name,"img_{}.png".format(size)))
|
109 |
inputs = processor(image, return_tensors="pt")
|
110 |
with torch.no_grad():
|
111 |
outputs = model(**inputs)
|
|
|
113 |
panoptic_segmentation = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
114 |
save_folder = os.path.join(base_folder_path, name)
|
115 |
os.makedirs(save_folder, exist_ok=True)
|
116 |
+
draw_panoptic_segmentation(**panoptic_segmentation, save_folder = save_folder, noseg = noseg, model = model)
|
117 |
print("Finish segment")
|
118 |
+
block_flag += 1
|
119 |
+
return block_flag
|
utils.py
CHANGED
@@ -249,6 +249,7 @@ def load_mask (input_folder):
|
|
249 |
except:
|
250 |
print("please check mask")
|
251 |
# plt.imsave( "out_mask.png", mask_list_edit[0])
|
|
|
252 |
return mask_list, mask_label_list
|
253 |
|
254 |
def load_image(image_path, left=0, right=0, top=0, bottom=0, size = 512):
|
|
|
249 |
except:
|
250 |
print("please check mask")
|
251 |
# plt.imsave( "out_mask.png", mask_list_edit[0])
|
252 |
+
import pdb; pdb.set_trace()
|
253 |
return mask_list, mask_label_list
|
254 |
|
255 |
def load_image(image_path, left=0, right=0, top=0, bottom=0, size = 512):
|