Spaces:
Paused
Paused
File size: 28,697 Bytes
9a46140 7f52dcc 9a46140 7f52dcc ccbba65 7f52dcc daba178 22e75d1 51d3872 4eac896 51d3872 4eac896 51d3872 4eac896 51d3872 4eac896 51d3872 8cad88e 51d3872 3fec205 6a4459c 3fec205 8cad88e 6a4459c 7677101 6a4459c 8cad88e 3fec205 51d3872 8844c67 95145c9 8844c67 56293b7 8844c67 95145c9 51d3872 93d3c59 51d3872 8844c67 51d3872 93d3c59 8844c67 51d3872 93d3c59 51d3872 93d3c59 51d3872 93d3c59 51d3872 93d3c59 51d3872 cda6a7a 93d3c59 8844c67 95145c9 51d3872 93d3c59 51d3872 8844c67 93d3c59 51d3872 93d3c59 51d3872 93d3c59 51d3872 93d3c59 c49c6cf 8844c67 93d3c59 22e75d1 8844c67 8cad88e 8844c67 c49c6cf 8844c67 8cad88e 51d3872 93d3c59 51d3872 a49ff7a 8844c67 01d80b0 5219269 56293b7 8844c67 56293b7 8844c67 01d80b0 56293b7 01d80b0 56293b7 01d80b0 56293b7 01d80b0 56293b7 01d80b0 56293b7 01d80b0 56293b7 01d80b0 5219269 8844c67 9fd29fd d3afc5f 8844c67 d3afc5f 8844c67 d3afc5f 8844c67 9fd29fd d3afc5f 01d80b0 d0e3289 64b36f4 8844c67 95145c9 5219269 d3afc5f 8844c67 d3afc5f 51d3872 56293b7 8844c67 d3afc5f 8844c67 01d80b0 56293b7 01d80b0 0f26b5a 8844c67 95145c9 3fec205 51d3872 93d3c59 51d3872 bac45a2 51d3872 bac45a2 51d3872 c49c6cf 93d3c59 51d3872 c49c6cf 93d3c59 d3afc5f 93d3c59 51d3872 93d3c59 c49c6cf 93d3c59 06121b4 93d3c59 d3afc5f 93d3c59 d3afc5f 51d3872 93d3c59 51d3872 8cad88e b3accd3 d0a53bf 51d3872 8cad88e d3afc5f 51d3872 56293b7 8cad88e 9a46140 d3afc5f 56293b7 b3accd3 c49c6cf b3accd3 c49c6cf c7d2695 c49c6cf 56293b7 c49c6cf 56293b7 c49c6cf 56293b7 c49c6cf 56293b7 8dce56b c49c6cf 8dce56b c49c6cf 8dce56b 56293b7 c49c6cf 56293b7 c49c6cf 56293b7 d3afc5f 56293b7 c49c6cf d3afc5f 56293b7 51d3872 d3afc5f 51d3872 56293b7 c97769e 2fa9381 56293b7 51d3872 93d3c59 51d3872 d3afc5f 93d3c59 56293b7 d3afc5f 56293b7 d3afc5f 93d3c59 d3afc5f 56293b7 8844c67 93d3c59 d3afc5f 51d3872 d3afc5f 93d3c59 51d3872 93d3c59 d3afc5f bac45a2 c49c6cf 51d3872 d3afc5f 51d3872 d3afc5f 56293b7 51d3872 56293b7 51d3872 56293b7 51d3872 93d3c59 51d3872 93d3c59 c49c6cf 93d3c59 64b36f4 22e75d1 64b36f4 22e75d1 64b36f4 22e75d1 64b36f4 51d3872 64b36f4 22e75d1 0ef6e2f 0b1f2f1 46c9a80 0b1f2f1 d3afc5f 6ee21d1 d3afc5f 93d3c59 d3afc5f b3accd3 d3afc5f 93d3c59 b3accd3 d3afc5f 3fec205 93d3c59 3fec205 0b1f2f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
import streamlit as st
import pandas as pd
from bertopic import BERTopic
from sentence_transformers import SentenceTransformer
from span_marker import SpanMarkerModel
from umap import UMAP
from hdbscan import HDBSCAN
from sklearn.feature_extraction.text import CountVectorizer
from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, TextGeneration, PartOfSpeech
from torch import cuda
from spacy.cli import download
import transformers
from torch import bfloat16
import os
import scipy.cluster.hierarchy as sch # HIERARCHY
# ------------------------------------------------------------------------------
# Funzione per ottenere la configurazione della lingua
# ------------------------------------------------------------------------------
def get_language_config(selected_language):
"""
Restituisce un dizionario di configurazione in base alla lingua selezionata.
Include il modello spaCy, il modello linguistico per il rilevamento (SpanMarker)
e i parametri per DataForSEO.
"""
language_options = {
"English (US)": {
"spacy_model": "en_core_web_sm",
"linguistic_model": "nbroad/span-marker-xdistil-l12-h384-orgs-v3",
"dataforseo_params": {"language": "en-us"}
},
"English (UK)": {
"spacy_model": "en_core_web_sm", # spaCy non ha un modello UK specifico, si usa quello standard
"linguistic_model": "nbroad/span-marker-xdistil-l12-h384-orgs-v3",
"dataforseo_params": {"language": "en-gb"}
},
"Italiano": {
"spacy_model": "it_core_news_sm",
"linguistic_model": "nbroad/span-marker-xdistil-l12-h384-orgs-v3", # Sostituire con il modello appropriato se disponibile
"dataforseo_params": {"language": "it-it"}
},
"Español": {
"spacy_model": "es_core_news_sm",
"linguistic_model": "nbroad/span-marker-xdistil-l12-h384-orgs-v3",
"dataforseo_params": {"language": "es-es"}
},
"Deutsch": {
"spacy_model": "de_core_news_sm",
"linguistic_model": "nbroad/span-marker-xdistil-l12-h384-orgs-v3",
"dataforseo_params": {"language": "de-de"}
},
"Français": {
"spacy_model": "fr_core_news_sm",
"linguistic_model": "nbroad/span-marker-xdistil-l12-h384-orgs-v3",
"dataforseo_params": {"language": "fr-fr"}
}
}
return language_options.get(selected_language, language_options["English (US)"])
# ------------------------------------------------------------------------------
# Configurazione della pagina
# ------------------------------------------------------------------------------
st.set_page_config(
page_title="Keywords Cluster for SEO",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://www.linkedin.com/in/francisco-nardi-212b338b/',
'Report a bug': "https://www.linkedin.com/in/francisco-nardi-212b338b/",
'About': "# A simple keywords clustering tool for SEO purpose."
}
)
# Inizializzazione della sessione (opzionale)
if 'model_loaded' not in st.session_state:
st.session_state.model_loaded = False
if 'analysis_complete' not in st.session_state:
st.session_state.analysis_complete = False
if 'current_step' not in st.session_state:
st.session_state.current_step = 0
# Stili CSS personalizzati
st.markdown("""
<style>
.stProgress > div > div > div > div {
background-color: #1f77b4;
}
.success-message {
padding: 1rem;
border-radius: 0.5rem;
background-color: #d4edda;
color: #155724;
border: 1px solid #c3e6cb;
margin-bottom: 1rem;
}
.info-box {
padding: 1rem;
border-radius: 0.5rem;
background-color: #e2f0fd;
border: 1px solid #b8daff;
margin-bottom: 1rem;
}
.sidebar .sidebar-content {
width: 400px !important;
}
</style>
""", unsafe_allow_html=True)
# ------------------------------------------------------------------------------
# 1) Caricamento modelli con cache_resource
# ------------------------------------------------------------------------------
@st.cache_resource
def load_models(language_config):
"""Carica i modelli necessari con caching (una sola volta)."""
with st.spinner("Loading models... This may take a few minutes."):
try:
# Scarica il modello spaCy in base alla lingua selezionata
spacy_model_name = language_config["spacy_model"]
download(spacy_model_name)
# Modello SpanMarker: rilevazione entità (Brand/Unbranded)
linguistic_model_name = language_config["linguistic_model"]
if cuda.is_available():
model_filter = SpanMarkerModel.from_pretrained(linguistic_model_name).cuda()
else:
model_filter = SpanMarkerModel.from_pretrained(linguistic_model_name)
# Modello di embedding SentenceTransformer (resta invariato)
embedding_model = SentenceTransformer("all-mpnet-base-v2")
return model_filter, embedding_model
except Exception as e:
st.error(f"Error loading models: {str(e)}")
raise
# ------------------------------------------------------------------------------
# 2) Lettura CSV con cache_data
# ------------------------------------------------------------------------------
@st.cache_data
def load_csv(file, skiprows, nrows):
"""Carica il CSV con caching."""
df = pd.read_csv(file, skiprows=skiprows, nrows=nrows)
return df
# ------------------------------------------------------------------------------
# 3) Funzione di etichettatura Brand/Unbranded con cache_data
# ------------------------------------------------------------------------------
@st.cache_data
def process_keywords(df, model_filter):
"""
Rileva eventuali keyword di tipo 'Brand' utilizzando il modello SpanMarker.
Ritorna la lista di etichette 'Brand' o 'Unbranded' per ciascuna keyword.
"""
results = []
total = len(df)
progress_text = "Processing keywords..."
progress_bar = st.progress(0, text=progress_text)
for i, keyword in enumerate(df['Keyword']):
try:
entities = model_filter.predict([keyword])
label = (
"Brand"
if entities and isinstance(entities[0], list) and any(entity.get("label") == "ORG" for entity in entities[0])
else "Unbranded"
)
results.append(label)
except Exception as e:
st.error(f"Error processing keyword '{keyword}': {str(e)}")
results.append("Unbranded")
progress_bar.progress((i + 1) / total, text=f"{progress_text} ({i+1}/{total})")
progress_bar.empty()
return results
# ------------------------------------------------------------------------------
# 4) Creazione del modello di topic
# ------------------------------------------------------------------------------
def create_topic_model(embedding_model, model_params, language_config):
"""Crea e configura il modello di topic modeling."""
try:
# Configurazione quantizzazione per Hugging Face
bnb_config = transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16
)
# Configurazione UMAP
umap_model = UMAP(
n_neighbors=model_params['umap_n_neighbors'],
n_components=model_params['umap_n_components'],
min_dist=model_params['umap_min_dist'],
metric='cosine',
random_state=42
)
# Configurazione HDBSCAN
hdbscan_model = HDBSCAN(
min_cluster_size=model_params['min_cluster_size'],
min_samples=model_params['min_samples'],
metric='euclidean',
cluster_selection_method='eom',
prediction_data=True
)
# Configurazione CountVectorizer
vectorizer_model = CountVectorizer(
stop_words="english",
min_df=model_params['min_df'],
max_df=model_params['max_df'],
ngram_range=(model_params['ngram_min'], model_params['ngram_max'])
)
# Configurazione Llama 2
model_id = 'meta-llama/Llama-2-7b-chat-hf'
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
quantization_config=bnb_config,
device_map='auto',
)
model.eval()
generator = transformers.pipeline(
model=model,
tokenizer=tokenizer,
task='text-generation',
temperature=model_params['llama_temperature'],
max_new_tokens=model_params['llama_max_tokens'],
repetition_penalty=model_params['llama_repetition_penalty']
)
# Prompt configuration
system_prompt = """
<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant for labeling topics.
<</SYS>>
"""
example_prompt = """
I have a topic that contains the following documents:
- Traditional diets in most cultures were primarily plant-based with a little meat on top, but with the rise of industrial style meat production and factory farming, meat has become a staple food.
- Meat, but especially beef, is the word food in terms of emissions.
- Eating meat doesn't make you a bad person, not eating meat doesn't make you a good one.
The topic is described by the following keywords: 'meat, beef, eat, eating, emissions, steak, food, health, processed, chicken'.
Based on the information about the topic above, please create a short label of this topic. Make sure you to only return the label and nothing more.
[/INST] Environmental impacts of eating meat
"""
main_prompt = """
[INST]
I have a topic that contains the following documents:
[DOCUMENTS]
The topic is described by the following keywords: '[KEYWORDS]'.
Based on the information about the topic above, please create a **short label** of this topic.
**Return only the label** and avoid adding any explanations or extra text such as 'topic'.
[/INST]
"""
prompt = system_prompt + example_prompt + main_prompt
# Create representation models
keybert_model = KeyBERTInspired()
# Utilizza il modello spaCy in base alla lingua selezionata
pos_model = PartOfSpeech(language_config["spacy_model"])
mmr_model = MaximalMarginalRelevance(diversity=model_params['diversity_factor'])
llama2 = TextGeneration(generator, prompt=prompt)
representation_model = {
"KeyBERT": keybert_model,
"Llama2": llama2,
"MMR": mmr_model,
"POS": pos_model
}
return BERTopic(
embedding_model=embedding_model,
umap_model=umap_model,
hdbscan_model=hdbscan_model,
vectorizer_model=vectorizer_model,
representation_model=representation_model,
top_n_words=model_params['top_n_words'],
verbose=True
)
except Exception as e:
st.error(f"Error creating topic model: {str(e)}")
raise
# ------------------------------------------------------------------------------
# 5) Analisi principale (cachiamo i risultati finali dell'analisi)
# ------------------------------------------------------------------------------
@st.cache_data(hash_funcs={
SpanMarkerModel: lambda _: None, # ignora hashing per SpanMarker
SentenceTransformer: lambda _: None # ignora hashing per SentenceTransformer
})
def run_analysis(df, model_filter, embedding_model, model_params, exclude_brand_keywords, language_config):
"""
- Etichetta (facoltativo) come 'Brand' o 'Unbranded'
- Filtra i brand se richiesto
- Crea embeddings
- Esegue il topic modeling
- Restituisce il modello e il DataFrame dei risultati
"""
# Se l'utente sceglie di escludere i brand, etichettiamo e filtriamo
if exclude_brand_keywords:
df['Label'] = process_keywords(df, model_filter)
filtered_df = df[df['Label'] == 'Unbranded']
else:
df['Label'] = "Unbranded"
filtered_df = df
filtered_keywords = filtered_df['Keyword'].tolist()
if not filtered_keywords:
st.warning("No keywords found for analysis (perhaps all were branded).")
return None, None
# Genera embeddings
embeddings = embedding_model.encode(filtered_keywords, show_progress_bar=True)
# Crea e applica topic model (passando anche la configurazione della lingua)
topic_model = create_topic_model(embedding_model, model_params, language_config)
topics, probs = topic_model.fit_transform(filtered_keywords, embeddings)
# Ottieni gli embeddings ridotti per la visualizzazione
reduced_embeddings = topic_model.umap_model.embedding_
# Usa i label generati da Llama 2 come label finali
llama_topic_labels = {
topic: "".join(list(zip(*values))[0])
for topic, values in topic_model.topic_aspects_["Llama2"].items()
}
llama_topic_labels[-1] = "Outlier Topic"
topic_model.set_topic_labels(llama_topic_labels)
# Ottieni le informazioni sui topic
topic_info = topic_model.get_topic_info()
topic_labels = dict(zip(topic_info["Topic"], topic_info["CustomName"]))
# Ottieni le informazioni di default BERT
bert_labels = dict(zip(topic_info["Topic"], topic_info["Name"]))
# Creiamo il DataFrame dei risultati
results_df = pd.DataFrame({
"Keyword": filtered_keywords,
"Topic ID": topics,
"Confidence": probs
})
# Aggiungiamo le label Llama e BERT
results_df["Llama label"] = [
topic_labels[topic] if topic in topic_labels else "Outlier Topic"
for topic in topics
]
results_df["BERT label"] = [
bert_labels[topic] if topic in bert_labels else "Outlier Topic"
for topic in topics
]
# Se nel CSV c'è una colonna 'Volume', la aggiungiamo
if "Volume" in filtered_df.columns:
results_df["Volume"] = filtered_df["Volume"].values
return topic_model, results_df
# ------------------------------------------------------------------------------
# 6) Main Streamlit App
# ------------------------------------------------------------------------------
def main():
st.title("🔍 Keywords Cluster for SEO")
# ------------------------------------------------------------------------------
# Sidebar: Selezione della lingua e configurazioni
# ------------------------------------------------------------------------------
with st.sidebar:
st.header("Configuration")
# Selezione della lingua
selected_language = st.selectbox(
"Select Language",
["English (US)", "English (UK)", "Italiano", "Español", "Deutsch", "Français"],
index=0,
help="Seleziona la lingua per l'analisi. Questo imposterà il modello spaCy, il modello linguistico per il rilevamento e i parametri per DataForSEO."
)
language_config = get_language_config(selected_language)
# File upload e configurazione righe
uploaded_file = st.file_uploader(
"Upload CSV file",
type="csv",
help="File must contain a 'Keyword' column"
)
with st.expander("CSV Reading Options"):
min_rows = st.number_input(
"Start reading from row",
min_value=1,
value=1,
help="Define the first row of the CSV file from which data should be read."
)
max_rows = st.number_input(
"Maximum rows to read",
min_value=1,
value=5000,
help="Define how many rows in total to read from the CSV file, starting from the row defined above."
)
# Opzione per escludere keyword brand
exclude_brands = st.checkbox(
"Exclude Organization keywords",
value=False,
help="If enabled, organization-labeled keywords are excluded from the analysis. (ex. company ltd)"
)
# Parametri UMAP
with st.expander("UMAP Parameters"):
umap_n_neighbors = st.slider("N Neighbors", 2, 100, 10)
umap_n_components = st.slider("N Components", 2, 50, 2)
umap_min_dist = st.slider("Min Distance", 0.0, 1.0, 0.0, 0.01)
# Parametri HDBSCAN
with st.expander("HDBSCAN Parameters"):
min_cluster_size = st.slider("Min Cluster Size", 2, 50, 5)
min_samples = st.slider("Min Samples", 1, 20, 5)
# Parametri Vectorizer
with st.expander("Vectorizer Parameters"):
min_df_type = st.radio(
"Min Document Frequency Type",
["Absolute", "Relative"],
help="Absolute: minimum count of documents, Relative: minimum fraction of documents"
)
if min_df_type == "Absolute":
min_df = st.number_input("Min Document Count", 1, 100, 2)
else:
min_df = st.slider("Min Document Fraction", 0.0, 0.5, 0.1, 0.01)
max_df = st.slider(
"Max Document Fraction",
min_value=float(min_df) if isinstance(min_df, float) else 0.5,
max_value=1.0,
value=0.95,
step=0.05
)
st.info(
f"Documents must appear in at least {min_df} "
f"{'documents' if isinstance(min_df, int) else '% of documents'} "
f"and at most {int(max_df * 100)}% of documents"
)
ngram_min = st.number_input("N-gram Min", 1, 3, 1)
ngram_max = st.number_input("N-gram Max", 1, 3, 2)
# Parametri Topic Model
with st.expander("Topic Model Parameters"):
top_n_words = st.slider("Top N Words", 5, 30, 10)
diversity_factor = st.slider("Topic Diversity", 0.0, 1.0, 0.3)
# Parametri Llama 2
with st.expander("Llama 2 Parameters"):
llama_temperature = st.slider("Temperature", 0.0, 1.0, 0.1, 0.1)
llama_max_tokens = st.slider("Max Tokens", 50, 200, 100)
llama_repetition_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1, 0.1)
# Help section
with st.expander("ℹ️ Help"):
st.markdown("""
**How to use this app:**
1. Upload a CSV file with keywords
2. Configure CSV reading options
3. (Optionally) check "Exclude brand-labeled keywords"
4. Adjust model parameters if needed
5. Click 'Start Analysis'
6. Wait for results to appear
**Advanced Parameters:**
- UMAP: Controls dimensionality reduction
- HDBSCAN: Controls clustering behavior
- Vectorizer: Controls text preprocessing
- Topic Model: Controls topic generation
- Llama 2: Controls topic labeling
**Language Selection:**
Selezionando la lingua verranno impostati:
- Il modello spaCy da utilizzare (per es. 'en_core_web_sm' per English o 'it_core_news_sm' per Italiano)
- Il modello linguistico per il rilevamento (SpanMarker) (sostituisci i placeholder con i modelli corretti se disponibili)
- I parametri per DataForSEO (ad es. il codice lingua come 'en-us', 'it-it', ecc.)
""")
# ------------------------------------------------------------------------------
# 7) Prepariamo dizionario parametri per il topic model
# ------------------------------------------------------------------------------
model_params = {
'umap_n_neighbors': umap_n_neighbors,
'umap_n_components': umap_n_components,
'umap_min_dist': umap_min_dist,
'min_cluster_size': min_cluster_size,
'min_samples': min_samples,
'min_df': min_df,
'max_df': max_df,
'ngram_min': ngram_min,
'ngram_max': ngram_max,
'top_n_words': top_n_words,
'diversity_factor': diversity_factor,
'llama_temperature': llama_temperature,
'llama_max_tokens': llama_max_tokens,
'llama_repetition_penalty': llama_repetition_penalty
}
# ------------------------------------------------------------------------------
# 8) Se abbiamo caricato un file, procediamo
# ------------------------------------------------------------------------------
if uploaded_file is not None:
try:
# Carica dati con caching
df = load_csv(
file=uploaded_file,
skiprows=min_rows - 1,
nrows=max_rows - min_rows + 1
)
if 'Keyword' not in df.columns:
st.error("CSV must contain a 'Keyword' column")
return
# Preview dati
with st.expander("Preview Data", expanded=True):
st.write(f"Reading rows {min_rows} to {max_rows}")
st.dataframe(
df.head(),
use_container_width=True
)
st.write(f"Total rows loaded: {len(df)}")
# Pulsante per avviare l'analisi
if st.button("Start Analysis", type="primary"):
try:
# Carichiamo i modelli (cache_resource) con la configurazione della lingua
with st.spinner("Loading models..."):
model_filter, embedding_model = load_models(language_config)
# Eseguiamo l'analisi (cache_data)
with st.spinner("Processing data..."):
topic_model, results_df = run_analysis(
df,
model_filter,
embedding_model,
model_params,
exclude_brand_keywords=exclude_brands,
language_config=language_config
)
if topic_model is None or results_df is None:
st.error("Analysis failed!")
return
# Visualizza riepilogo configurazione
with st.expander("Configuration Summary", expanded=False):
st.subheader("Model Parameters")
st.json(model_params)
st.subheader("Language Configuration")
st.json(language_config)
# ------------------------------------------------------------------------------
# 9) Mostra risultati
# ------------------------------------------------------------------------------
st.write("### Results Table")
st.dataframe(results_df, use_container_width=True, hide_index=True)
# Visualizza la dashboard interattiva
st.write("### Interactive Topic Visualization")
try:
# Embedding ridotto
fig = topic_model.visualize_documents(
results_df['Keyword'].tolist(),
reduced_embeddings=topic_model.umap_model.embedding_,
hide_annotations=True,
hide_document_hover=False,
custom_labels=True
)
st.plotly_chart(fig, theme="streamlit", use_container_width=True)
# Visualizzazione dei topic
st.write("### Topic Overview")
try:
topic_fig = topic_model.visualize_topics(custom_labels=True)
st.plotly_chart(topic_fig, theme="streamlit", use_container_width=True)
except Exception as e:
st.error(f"Error creating topic visualization: {str(e)}")
# Visualizzazione barchart dei topic
st.write("### Topic Distribution")
try:
n_topics = len(topic_model.get_topic_info())
n_topics = min(50, max(1, n_topics - 1)) # -1 per outlier
barchart_fig = topic_model.visualize_barchart(
top_n_topics=n_topics,
custom_labels=True
)
st.plotly_chart(barchart_fig, theme="streamlit", use_container_width=True)
except Exception as e:
st.error(f"Error creating barchart visualization: {str(e)}")
# (A) AGGIUNTA: Visualizzazione gerarchica dei topic
st.write("### Hierarchical Topics")
try:
docs = results_df["Keyword"].tolist()
linkage_function = lambda x: sch.linkage(x, 'single', optimal_ordering=True)
hierarchical_topics = topic_model.hierarchical_topics(
docs,
linkage_function=linkage_function
)
# Grafico gerarchico
fig_hierarchy = topic_model.visualize_hierarchy(
hierarchical_topics=hierarchical_topics,
custom_labels=True
)
st.plotly_chart(fig_hierarchy, theme="streamlit", use_container_width=True)
# (B) AGGIUNTA: Visualizzazione testuale dell'albero
st.write("### Hierarchical Topic Tree")
tree = topic_model.get_topic_tree(hierarchical_topics)
st.text(tree) # Oppure st.code(tree) per un blocco formattato
except Exception as e:
st.error(f"Error creating hierarchical visualization: {str(e)}")
# Download risultati in CSV
st.download_button(
label="Download Results",
data=results_df.to_csv(index=False),
file_name="keyword_analysis_results.csv",
mime="text/csv",
key="download_results"
)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
except Exception as e:
st.error(f"Error reading file: {str(e)}")
else:
# Messaggio iniziale
st.info("""
👋 Welcome to the Keywords Cluster for SEO!
1. Upload a CSV file with a column named **'Keyword'**.
2. Adjust parameters in the sidebar if needed.
3. Click **"Start Analysis"**.
4. Explore the data.
5. Download the results (this will refresh page).
""")
if __name__ == "__main__":
main() |