Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,7 +25,7 @@ st.set_page_config(
|
|
| 25 |
}
|
| 26 |
)
|
| 27 |
|
| 28 |
-
# Inizializzazione della sessione
|
| 29 |
if 'model_loaded' not in st.session_state:
|
| 30 |
st.session_state.model_loaded = False
|
| 31 |
if 'analysis_complete' not in st.session_state:
|
|
@@ -60,43 +60,69 @@ st.markdown("""
|
|
| 60 |
</style>
|
| 61 |
""", unsafe_allow_html=True)
|
| 62 |
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
| 64 |
@st.cache_resource
|
| 65 |
def load_models():
|
| 66 |
-
"""Carica i modelli necessari con caching."""
|
| 67 |
with st.spinner("Loading models... This may take a few minutes."):
|
| 68 |
try:
|
|
|
|
| 69 |
download("en_core_web_sm")
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
embedding_model = SentenceTransformer("all-mpnet-base-v2")
|
|
|
|
| 75 |
return model_filter, embedding_model
|
| 76 |
except Exception as e:
|
| 77 |
st.error(f"Error loading models: {str(e)}")
|
| 78 |
raise
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
@st.cache_data
|
| 81 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
"""
|
| 83 |
Rileva eventuali keyword di tipo 'Brand' utilizzando il modello SpanMarker.
|
| 84 |
Ritorna la lista di etichette 'Brand' o 'Unbranded' per ciascuna keyword.
|
| 85 |
"""
|
| 86 |
results = []
|
| 87 |
total = len(df)
|
| 88 |
-
|
| 89 |
progress_text = "Processing keywords..."
|
| 90 |
progress_bar = st.progress(0, text=progress_text)
|
| 91 |
|
| 92 |
for i, keyword in enumerate(df['Keyword']):
|
| 93 |
try:
|
| 94 |
-
entities =
|
| 95 |
label = "Brand" if entities and isinstance(entities[0], list) and \
|
| 96 |
any(entity.get("label") == "ORG" for entity in entities[0]) else "Unbranded"
|
| 97 |
results.append(label)
|
| 98 |
except Exception as e:
|
| 99 |
-
# Se non riesce a rilevare entità, di default etichetta come 'Unbranded'
|
| 100 |
st.error(f"Error processing keyword '{keyword}': {str(e)}")
|
| 101 |
results.append("Unbranded")
|
| 102 |
|
|
@@ -105,8 +131,13 @@ def process_keywords(df, _model_filter):
|
|
| 105 |
progress_bar.empty()
|
| 106 |
return results
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
def create_topic_model(embedding_model, model_params):
|
| 109 |
-
"""Crea e configura il modello di topic modeling
|
|
|
|
| 110 |
try:
|
| 111 |
# Configurazione quantizzazione per Hugging Face
|
| 112 |
bnb_config = transformers.BitsAndBytesConfig(
|
|
@@ -224,129 +255,87 @@ def create_topic_model(embedding_model, model_params):
|
|
| 224 |
st.error(f"Error creating topic model: {str(e)}")
|
| 225 |
raise
|
| 226 |
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
"""
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
"""
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
df['Label'] = "Unbranded"
|
| 243 |
-
filtered_df = df
|
| 244 |
-
|
| 245 |
-
filtered_keywords = filtered_df['Keyword'].tolist()
|
| 246 |
-
|
| 247 |
-
if not filtered_keywords:
|
| 248 |
-
st.warning("No keywords found for analysis (perhaps all were branded).")
|
| 249 |
-
return None, None
|
| 250 |
-
|
| 251 |
-
# Genera embeddings
|
| 252 |
-
embeddings = embedding_model.encode(filtered_keywords, show_progress_bar=True)
|
| 253 |
-
|
| 254 |
-
# Crea e applica topic model
|
| 255 |
-
topic_model = create_topic_model(embedding_model, model_params)
|
| 256 |
-
topics, probs = topic_model.fit_transform(filtered_keywords, embeddings)
|
| 257 |
-
|
| 258 |
-
# Ottieni gli embeddings ridotti per la visualizzazione
|
| 259 |
-
reduced_embeddings = topic_model.umap_model.embedding_
|
| 260 |
-
|
| 261 |
-
# Usa i label generati da Llama 2 (TextGeneration) come label finali
|
| 262 |
-
llama_topic_labels = {
|
| 263 |
-
topic: "".join(list(zip(*values))[0])
|
| 264 |
-
for topic, values in topic_model.topic_aspects_["Llama2"].items()
|
| 265 |
-
}
|
| 266 |
-
llama_topic_labels[-1] = "Outlier Topic"
|
| 267 |
-
topic_model.set_topic_labels(llama_topic_labels)
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
results_df["Llama label"] = [
|
| 285 |
-
topic_labels[topic] if topic in topic_labels else "Outlier Topic"
|
| 286 |
-
for topic in topics
|
| 287 |
-
]
|
| 288 |
-
results_df["BERT label"] = [
|
| 289 |
-
bert_labels[topic] if topic in bert_labels else "Outlier Topic"
|
| 290 |
-
for topic in topics
|
| 291 |
-
]
|
| 292 |
-
|
| 293 |
-
# Se nel CSV c'è una colonna 'Volume', la aggiungiamo
|
| 294 |
-
if "Volume" in filtered_df.columns:
|
| 295 |
-
results_df["Volume"] = filtered_df["Volume"].values
|
| 296 |
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
fig = topic_model.visualize_documents(
|
| 305 |
-
filtered_keywords,
|
| 306 |
-
reduced_embeddings=reduced_embeddings,
|
| 307 |
-
hide_annotations=True,
|
| 308 |
-
hide_document_hover=False,
|
| 309 |
-
custom_labels=True
|
| 310 |
-
)
|
| 311 |
-
st.plotly_chart(fig, theme="streamlit", use_container_width=True)
|
| 312 |
-
|
| 313 |
-
# Visualizzazione dei topic
|
| 314 |
-
st.write("### Topic Overview")
|
| 315 |
-
try:
|
| 316 |
-
topic_fig = topic_model.visualize_topics(custom_labels=True)
|
| 317 |
-
st.plotly_chart(topic_fig, theme="streamlit", use_container_width=True)
|
| 318 |
-
except Exception as e:
|
| 319 |
-
st.error(f"Error creating topic visualization: {str(e)}")
|
| 320 |
-
|
| 321 |
-
# Visualizzazione barchart dei topic
|
| 322 |
-
st.write("### Topic Distribution")
|
| 323 |
-
try:
|
| 324 |
-
# Calcola il numero di topic da visualizzare
|
| 325 |
-
n_topics = len(topic_model.get_topic_info())
|
| 326 |
-
n_topics = min(50, max(1, n_topics - 1)) # -1 per escludere l'outlier topic se presente
|
| 327 |
-
|
| 328 |
-
barchart_fig = topic_model.visualize_barchart(
|
| 329 |
-
top_n_topics=n_topics,
|
| 330 |
-
custom_labels=True
|
| 331 |
-
)
|
| 332 |
-
st.plotly_chart(barchart_fig, theme="streamlit", use_container_width=True)
|
| 333 |
-
except Exception as e:
|
| 334 |
-
st.error(f"Error creating barchart visualization: {str(e)}")
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
return topic_model, results_df
|
| 340 |
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
|
| 345 |
|
|
|
|
|
|
|
|
|
|
| 346 |
def main():
|
| 347 |
-
st.title("🔍 NLP Keyword Analysis")
|
| 348 |
-
|
| 349 |
-
topic_model = None # Inizializza topic_model qui
|
| 350 |
|
| 351 |
# Sidebar con configurazioni
|
| 352 |
with st.sidebar:
|
|
@@ -439,9 +428,12 @@ def main():
|
|
| 439 |
- Vectorizer: Controls text preprocessing
|
| 440 |
- Topic Model: Controls topic generation
|
| 441 |
- Llama 2: Controls topic labeling
|
|
|
|
|
|
|
|
|
|
| 442 |
""")
|
| 443 |
|
| 444 |
-
#
|
| 445 |
model_params = {
|
| 446 |
'umap_n_neighbors': umap_n_neighbors,
|
| 447 |
'umap_n_components': umap_n_components,
|
|
@@ -459,10 +451,15 @@ def main():
|
|
| 459 |
'llama_repetition_penalty': llama_repetition_penalty
|
| 460 |
}
|
| 461 |
|
|
|
|
| 462 |
if uploaded_file is not None:
|
| 463 |
try:
|
| 464 |
-
# Carica dati con
|
| 465 |
-
df =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
|
| 467 |
if 'Keyword' not in df.columns:
|
| 468 |
st.error("CSV must contain a 'Keyword' column")
|
|
@@ -473,27 +470,21 @@ def main():
|
|
| 473 |
st.write(f"Reading rows {min_rows} to {max_rows}")
|
| 474 |
st.dataframe(
|
| 475 |
df.head(),
|
| 476 |
-
use_container_width=True
|
| 477 |
-
column_config={
|
| 478 |
-
"Keyword": st.column_config.TextColumn(
|
| 479 |
-
"Keyword",
|
| 480 |
-
help="Input keywords for analysis"
|
| 481 |
-
)
|
| 482 |
-
}
|
| 483 |
)
|
| 484 |
st.write(f"Total rows loaded: {len(df)}")
|
| 485 |
|
| 486 |
-
#
|
| 487 |
if st.button("Start Analysis", type="primary"):
|
| 488 |
try:
|
| 489 |
-
#
|
| 490 |
with st.status("Loading models...", expanded=True) as status:
|
| 491 |
model_filter, embedding_model = load_models()
|
| 492 |
status.update(label="Models loaded successfully!", state="complete")
|
| 493 |
|
| 494 |
-
#
|
| 495 |
with st.status("Processing data...", expanded=True) as status:
|
| 496 |
-
topic_model, results_df =
|
| 497 |
df,
|
| 498 |
model_filter,
|
| 499 |
embedding_model,
|
|
@@ -511,15 +502,56 @@ def main():
|
|
| 511 |
with st.expander("Configuration Summary", expanded=False):
|
| 512 |
st.json(model_params)
|
| 513 |
|
| 514 |
-
#
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 523 |
|
| 524 |
except Exception as e:
|
| 525 |
st.error(f"An error occurred during analysis: {str(e)}")
|
|
@@ -527,21 +559,18 @@ def main():
|
|
| 527 |
st.error(f"Error reading file: {str(e)}")
|
| 528 |
|
| 529 |
else:
|
|
|
|
| 530 |
st.info("""
|
| 531 |
-
👋 Welcome to the NLP Keyword Analysis tool!
|
| 532 |
|
| 533 |
-
|
| 534 |
-
|
|
|
|
|
|
|
| 535 |
|
| 536 |
-
|
| 537 |
-
- Number of rows to read from the CSV
|
| 538 |
-
- (Optionally) Exclude brand-labeled keywords
|
| 539 |
-
- UMAP parameters for dimensionality reduction
|
| 540 |
-
- HDBSCAN parameters for clustering
|
| 541 |
-
- Vectorizer parameters for text preprocessing
|
| 542 |
-
- Topic model parameters
|
| 543 |
-
- Llama 2 parameters for topic labeling
|
| 544 |
""")
|
| 545 |
|
|
|
|
| 546 |
if __name__ == "__main__":
|
| 547 |
main()
|
|
|
|
| 25 |
}
|
| 26 |
)
|
| 27 |
|
| 28 |
+
# Inizializzazione della sessione (opzionale, utile se vuoi tenere traccia di stati extra)
|
| 29 |
if 'model_loaded' not in st.session_state:
|
| 30 |
st.session_state.model_loaded = False
|
| 31 |
if 'analysis_complete' not in st.session_state:
|
|
|
|
| 60 |
</style>
|
| 61 |
""", unsafe_allow_html=True)
|
| 62 |
|
| 63 |
+
|
| 64 |
+
#
|
| 65 |
+
# 1) Caricamento modelli con cache_resource
|
| 66 |
+
#
|
| 67 |
@st.cache_resource
|
| 68 |
def load_models():
|
| 69 |
+
"""Carica i modelli necessari con caching (una sola volta)."""
|
| 70 |
with st.spinner("Loading models... This may take a few minutes."):
|
| 71 |
try:
|
| 72 |
+
# Scarica en_core_web_sm se non presente (per PartOfSpeech)
|
| 73 |
download("en_core_web_sm")
|
| 74 |
+
|
| 75 |
+
# Modello SpanMarker: rilevazione entità (Brand/Unbranded)
|
| 76 |
+
if cuda.is_available():
|
| 77 |
+
model_filter = SpanMarkerModel.from_pretrained(
|
| 78 |
+
"nbroad/span-marker-xdistil-l12-h384-orgs-v3"
|
| 79 |
+
).cuda()
|
| 80 |
+
else:
|
| 81 |
+
model_filter = SpanMarkerModel.from_pretrained(
|
| 82 |
+
"nbroad/span-marker-xdistil-l12-h384-orgs-v3"
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Modello di embedding SentenceTransformer
|
| 86 |
embedding_model = SentenceTransformer("all-mpnet-base-v2")
|
| 87 |
+
|
| 88 |
return model_filter, embedding_model
|
| 89 |
except Exception as e:
|
| 90 |
st.error(f"Error loading models: {str(e)}")
|
| 91 |
raise
|
| 92 |
|
| 93 |
+
|
| 94 |
+
#
|
| 95 |
+
# 2) Lettura CSV con cache_data
|
| 96 |
+
#
|
| 97 |
@st.cache_data
|
| 98 |
+
def load_csv(file, skiprows, nrows):
|
| 99 |
+
"""Carica il CSV con caching, così se l'utente riscarica o scarica i risultati,
|
| 100 |
+
Streamlit non rilegge il file da zero (se non è cambiato)."""
|
| 101 |
+
df = pd.read_csv(file, skiprows=skiprows, nrows=nrows)
|
| 102 |
+
return df
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
#
|
| 106 |
+
# 3) Funzione di etichettatura Brand/Unbranded con cache_data
|
| 107 |
+
#
|
| 108 |
+
@st.cache_data
|
| 109 |
+
def process_keywords(df, model_filter):
|
| 110 |
"""
|
| 111 |
Rileva eventuali keyword di tipo 'Brand' utilizzando il modello SpanMarker.
|
| 112 |
Ritorna la lista di etichette 'Brand' o 'Unbranded' per ciascuna keyword.
|
| 113 |
"""
|
| 114 |
results = []
|
| 115 |
total = len(df)
|
|
|
|
| 116 |
progress_text = "Processing keywords..."
|
| 117 |
progress_bar = st.progress(0, text=progress_text)
|
| 118 |
|
| 119 |
for i, keyword in enumerate(df['Keyword']):
|
| 120 |
try:
|
| 121 |
+
entities = model_filter.predict([keyword])
|
| 122 |
label = "Brand" if entities and isinstance(entities[0], list) and \
|
| 123 |
any(entity.get("label") == "ORG" for entity in entities[0]) else "Unbranded"
|
| 124 |
results.append(label)
|
| 125 |
except Exception as e:
|
|
|
|
| 126 |
st.error(f"Error processing keyword '{keyword}': {str(e)}")
|
| 127 |
results.append("Unbranded")
|
| 128 |
|
|
|
|
| 131 |
progress_bar.empty()
|
| 132 |
return results
|
| 133 |
|
| 134 |
+
|
| 135 |
+
#
|
| 136 |
+
# 4) Creazione del modello di topic
|
| 137 |
+
#
|
| 138 |
def create_topic_model(embedding_model, model_params):
|
| 139 |
+
"""Crea e configura il modello di topic modeling (non cachiamo,
|
| 140 |
+
perché potrebbe dipendere da molti parametri)"""
|
| 141 |
try:
|
| 142 |
# Configurazione quantizzazione per Hugging Face
|
| 143 |
bnb_config = transformers.BitsAndBytesConfig(
|
|
|
|
| 255 |
st.error(f"Error creating topic model: {str(e)}")
|
| 256 |
raise
|
| 257 |
|
| 258 |
+
|
| 259 |
+
#
|
| 260 |
+
# 5) Analisi principale (cachiamo i risultati finali dell'analisi)
|
| 261 |
+
#
|
| 262 |
+
@st.cache_data
|
| 263 |
+
def run_analysis(df, model_filter, embedding_model, model_params, exclude_brand_keywords):
|
| 264 |
"""
|
| 265 |
+
- Etichetta (facoltativo) come 'Brand' o 'Unbranded'
|
| 266 |
+
- Filtra i brand se richiesto
|
| 267 |
+
- Crea embeddings
|
| 268 |
+
- Esegue il topic modeling
|
| 269 |
+
- Restituisce il modello + results_df
|
| 270 |
"""
|
| 271 |
+
# Se l'utente sceglie di escludere i brand, etichettiamo e filtriamo
|
| 272 |
+
if exclude_brand_keywords:
|
| 273 |
+
df['Label'] = process_keywords(df, model_filter)
|
| 274 |
+
filtered_df = df[df['Label'] == 'Unbranded']
|
| 275 |
+
else:
|
| 276 |
+
df['Label'] = "Unbranded"
|
| 277 |
+
filtered_df = df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
+
filtered_keywords = filtered_df['Keyword'].tolist()
|
| 280 |
+
|
| 281 |
+
if not filtered_keywords:
|
| 282 |
+
st.warning("No keywords found for analysis (perhaps all were branded).")
|
| 283 |
+
return None, None
|
| 284 |
+
|
| 285 |
+
# Genera embeddings
|
| 286 |
+
embeddings = embedding_model.encode(filtered_keywords, show_progress_bar=True)
|
| 287 |
+
|
| 288 |
+
# Crea e applica topic model
|
| 289 |
+
topic_model = create_topic_model(embedding_model, model_params)
|
| 290 |
+
topics, probs = topic_model.fit_transform(filtered_keywords, embeddings)
|
| 291 |
+
|
| 292 |
+
# Ottieni gli embeddings ridotti per la visualizzazione
|
| 293 |
+
reduced_embeddings = topic_model.umap_model.embedding_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
+
# Usa i label generati da Llama 2 come label finali
|
| 296 |
+
llama_topic_labels = {
|
| 297 |
+
topic: "".join(list(zip(*values))[0])
|
| 298 |
+
for topic, values in topic_model.topic_aspects_["Llama2"].items()
|
| 299 |
+
}
|
| 300 |
+
llama_topic_labels[-1] = "Outlier Topic"
|
| 301 |
+
topic_model.set_topic_labels(llama_topic_labels)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
+
# Ottieni le informazioni sui topic
|
| 304 |
+
topic_info = topic_model.get_topic_info()
|
| 305 |
+
topic_labels = dict(zip(topic_info["Topic"], topic_info["CustomName"]))
|
|
|
|
| 306 |
|
| 307 |
+
# Ottieni le informazioni di default BERT
|
| 308 |
+
bert_labels = dict(zip(topic_info["Topic"], topic_info["Name"]))
|
| 309 |
+
|
| 310 |
+
# Creiamo il DataFrame dei risultati
|
| 311 |
+
results_df = pd.DataFrame({
|
| 312 |
+
"Keyword": filtered_keywords,
|
| 313 |
+
"Topic ID": topics,
|
| 314 |
+
"Confidence": probs
|
| 315 |
+
})
|
| 316 |
+
|
| 317 |
+
# Aggiungiamo le label Llama e BERT
|
| 318 |
+
results_df["Llama label"] = [
|
| 319 |
+
topic_labels[topic] if topic in topic_labels else "Outlier Topic"
|
| 320 |
+
for topic in topics
|
| 321 |
+
]
|
| 322 |
+
results_df["BERT label"] = [
|
| 323 |
+
bert_labels[topic] if topic in bert_labels else "Outlier Topic"
|
| 324 |
+
for topic in topics
|
| 325 |
+
]
|
| 326 |
+
|
| 327 |
+
# Se nel CSV c'è una colonna 'Volume', la aggiungiamo
|
| 328 |
+
if "Volume" in filtered_df.columns:
|
| 329 |
+
results_df["Volume"] = filtered_df["Volume"].values
|
| 330 |
+
|
| 331 |
+
return topic_model, results_df
|
| 332 |
|
| 333 |
|
| 334 |
+
#
|
| 335 |
+
# 6) Main Streamlit App
|
| 336 |
+
#
|
| 337 |
def main():
|
| 338 |
+
st.title("🔍 NLP Keyword Analysis with Cache")
|
|
|
|
|
|
|
| 339 |
|
| 340 |
# Sidebar con configurazioni
|
| 341 |
with st.sidebar:
|
|
|
|
| 428 |
- Vectorizer: Controls text preprocessing
|
| 429 |
- Topic Model: Controls topic generation
|
| 430 |
- Llama 2: Controls topic labeling
|
| 431 |
+
|
| 432 |
+
**Caching:**
|
| 433 |
+
- Con i decorator `@st.cache_data` e `@st.cache_resource`, eviterai ricalcoli costosi quando l'app si ricarica.
|
| 434 |
""")
|
| 435 |
|
| 436 |
+
# 7) Prepariamo dizionario parametri
|
| 437 |
model_params = {
|
| 438 |
'umap_n_neighbors': umap_n_neighbors,
|
| 439 |
'umap_n_components': umap_n_components,
|
|
|
|
| 451 |
'llama_repetition_penalty': llama_repetition_penalty
|
| 452 |
}
|
| 453 |
|
| 454 |
+
# 8) Se abbiamo caricato un file, procediamo
|
| 455 |
if uploaded_file is not None:
|
| 456 |
try:
|
| 457 |
+
# Carica dati con caching
|
| 458 |
+
df = load_csv(
|
| 459 |
+
file=uploaded_file,
|
| 460 |
+
skiprows=min_rows - 1,
|
| 461 |
+
nrows=max_rows - min_rows + 1
|
| 462 |
+
)
|
| 463 |
|
| 464 |
if 'Keyword' not in df.columns:
|
| 465 |
st.error("CSV must contain a 'Keyword' column")
|
|
|
|
| 470 |
st.write(f"Reading rows {min_rows} to {max_rows}")
|
| 471 |
st.dataframe(
|
| 472 |
df.head(),
|
| 473 |
+
use_container_width=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 474 |
)
|
| 475 |
st.write(f"Total rows loaded: {len(df)}")
|
| 476 |
|
| 477 |
+
# Pulsante per avviare l'analisi
|
| 478 |
if st.button("Start Analysis", type="primary"):
|
| 479 |
try:
|
| 480 |
+
# Carichiamo i modelli (cache_resource)
|
| 481 |
with st.status("Loading models...", expanded=True) as status:
|
| 482 |
model_filter, embedding_model = load_models()
|
| 483 |
status.update(label="Models loaded successfully!", state="complete")
|
| 484 |
|
| 485 |
+
# Eseguiamo l'analisi (cache_data)
|
| 486 |
with st.status("Processing data...", expanded=True) as status:
|
| 487 |
+
topic_model, results_df = run_analysis(
|
| 488 |
df,
|
| 489 |
model_filter,
|
| 490 |
embedding_model,
|
|
|
|
| 502 |
with st.expander("Configuration Summary", expanded=False):
|
| 503 |
st.json(model_params)
|
| 504 |
|
| 505 |
+
# 9) Mostra risultati
|
| 506 |
+
st.write("### Results Table")
|
| 507 |
+
st.dataframe(results_df, use_container_width=True, hide_index=True)
|
| 508 |
+
|
| 509 |
+
# Visualizza la dashboard interattiva
|
| 510 |
+
st.write("### Interactive Topic Visualization")
|
| 511 |
+
try:
|
| 512 |
+
# Embedding ridotto
|
| 513 |
+
fig = topic_model.visualize_documents(
|
| 514 |
+
results_df['Keyword'].tolist(),
|
| 515 |
+
reduced_embeddings=topic_model.umap_model.embedding_,
|
| 516 |
+
hide_annotations=True,
|
| 517 |
+
hide_document_hover=False,
|
| 518 |
+
custom_labels=True
|
| 519 |
)
|
| 520 |
+
st.plotly_chart(fig, theme="streamlit", use_container_width=True)
|
| 521 |
+
|
| 522 |
+
# Visualizzazione dei topic
|
| 523 |
+
st.write("### Topic Overview")
|
| 524 |
+
try:
|
| 525 |
+
topic_fig = topic_model.visualize_topics(custom_labels=True)
|
| 526 |
+
st.plotly_chart(topic_fig, theme="streamlit", use_container_width=True)
|
| 527 |
+
except Exception as e:
|
| 528 |
+
st.error(f"Error creating topic visualization: {str(e)}")
|
| 529 |
+
|
| 530 |
+
# Visualizzazione barchart dei topic
|
| 531 |
+
st.write("### Topic Distribution")
|
| 532 |
+
try:
|
| 533 |
+
n_topics = len(topic_model.get_topic_info())
|
| 534 |
+
n_topics = min(50, max(1, n_topics - 1)) # -1 per outlier
|
| 535 |
+
|
| 536 |
+
barchart_fig = topic_model.visualize_barchart(
|
| 537 |
+
top_n_topics=n_topics,
|
| 538 |
+
custom_labels=True
|
| 539 |
+
)
|
| 540 |
+
st.plotly_chart(barchart_fig, theme="streamlit", use_container_width=True)
|
| 541 |
+
except Exception as e:
|
| 542 |
+
st.error(f"Error creating barchart visualization: {str(e)}")
|
| 543 |
+
|
| 544 |
+
except Exception as e:
|
| 545 |
+
st.error(f"Error creating visualization: {str(e)}")
|
| 546 |
+
|
| 547 |
+
# Download risultati in CSV
|
| 548 |
+
st.download_button(
|
| 549 |
+
label="Download Results",
|
| 550 |
+
data=results_df.to_csv(index=False),
|
| 551 |
+
file_name="keyword_analysis_results.csv",
|
| 552 |
+
mime="text/csv",
|
| 553 |
+
key="download_results"
|
| 554 |
+
)
|
| 555 |
|
| 556 |
except Exception as e:
|
| 557 |
st.error(f"An error occurred during analysis: {str(e)}")
|
|
|
|
| 559 |
st.error(f"Error reading file: {str(e)}")
|
| 560 |
|
| 561 |
else:
|
| 562 |
+
# Messaggio iniziale
|
| 563 |
st.info("""
|
| 564 |
+
👋 Welcome to the NLP Keyword Analysis tool (with caching)!
|
| 565 |
|
| 566 |
+
1. Upload a CSV file with a column named **'Keyword'**.
|
| 567 |
+
2. Adjust parameters in the sidebar if needed.
|
| 568 |
+
3. Click **"Start Analysis"**.
|
| 569 |
+
4. Download the results.
|
| 570 |
|
| 571 |
+
*Note: Caching helps avoid re-running expensive computations when the app reloads.*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
""")
|
| 573 |
|
| 574 |
+
|
| 575 |
if __name__ == "__main__":
|
| 576 |
main()
|