File size: 13,454 Bytes
1e001e8
 
 
 
 
 
 
 
 
 
 
 
 
 
1d1d4f3
 
 
 
 
 
 
1e001e8
 
 
 
 
1d1d4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e001e8
1d1d4f3
 
 
 
 
 
 
 
1e001e8
 
 
 
 
 
 
1d1d4f3
 
 
 
 
 
 
1e001e8
1d1d4f3
 
1e001e8
 
1d1d4f3
 
 
 
 
 
 
1e001e8
1d1d4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e001e8
1d1d4f3
 
 
 
 
 
1e001e8
 
1d1d4f3
 
 
 
 
 
 
1e001e8
 
 
 
1d1d4f3
1e001e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d1d4f3
 
 
 
 
 
 
 
 
1e001e8
 
1d1d4f3
1e001e8
1d1d4f3
 
1e001e8
1d1d4f3
1e001e8
 
1d1d4f3
 
1e001e8
 
1d1d4f3
1e001e8
 
1d1d4f3
 
1e001e8
 
 
 
1d1d4f3
1e001e8
1d1d4f3
1e001e8
1d1d4f3
 
 
 
 
 
 
 
 
 
1e001e8
1d1d4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
1e001e8
 
5c66cc6
1d1d4f3
5c66cc6
 
1d1d4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f51052
 
6967f07
1d1d4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e001e8
 
1d1d4f3
 
 
1e001e8
1d1d4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f3de76
 
1d1d4f3
 
 
1e001e8
 
1d1d4f3
1e001e8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import os
from typing import Optional, Dict, Sequence
import transformers
from peft import PeftModel
import torch
from dataclasses import dataclass, field
from huggingface_hub import hf_hub_download
import json
import pandas as pd
from datasets import Dataset
from tqdm import tqdm
import spaces

from llama_customized_models import LlamaForCausalLMWithNumericalEmbedding
from torch.nn.utils.rnn import pad_sequence
import numpy as np
from torch.utils.data.dataloader import DataLoader
from torch.nn import functional as F
import importlib

from rdkit import RDLogger, Chem
# Suppress RDKit INFO messages
RDLogger.DisableLog('rdApp.*')

DEFAULT_PAD_TOKEN = "[PAD]"
device_map = "cuda"

means = {"qed": 0.5559003125710424, "logp": 3.497542110420217, "sas": 2.889429694406497, "tpsa": 80.19717097706841}
stds = {"qed": 0.21339854620824716, "logp": 1.7923582437824368, "sas": 0.8081188219568571, "tpsa": 38.212259443049554}

def phrase_df(df):
    metric_calculator = importlib.import_module("metric_calculator")

    new_df = []
    # iterate over the dataframe
    for i in range(len(df)):
        sub_df = dict()
        
        # get the SMILES
        smiles = df.iloc[i]['SMILES']
        # get the property names
        property_names = df.iloc[i]['property_names']
        # get the non normalized properties
        non_normalized_properties = df.iloc[i]['non_normalized_properties']

        sub_df['SMILES'] = smiles

        
        # compute the similarity between the scaffold and the SMILES

        for j in range(len(property_names)):
            # get the property name
            property_name = property_names[j]
            # get the non normalized property
            non_normalized_property = non_normalized_properties[j]

            sub_df[f'{property_name}_condition'] = non_normalized_property

            if smiles == "":
                sub_df[f'{property_name}_measured'] = np.nan
            else:
                property_eval_func_name = f"compute_{property_name}"
                property_eval_func = getattr(metric_calculator, property_eval_func_name)
                sub_df[f'{property_name}_measured'] = property_eval_func(Chem.MolFromSmiles(smiles))
            
        new_df.append(sub_df)
    
    new_df = pd.DataFrame(new_df)
    return new_df


@dataclass
class DataCollatorForCausalLMEval(object):
    tokenizer: transformers.PreTrainedTokenizer
    source_max_len: int
    target_max_len: int
    molecule_target_aug_prob: float
    molecule_start_str: str
    scaffold_aug_prob: float
    scaffold_start_str: str
    property_start_str: str
    property_inner_sep: str
    property_inter_sep: str
    end_str: str
    ignore_index: int
    has_scaffold: bool

    def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
        # Extract elements
        prop_token_map = {
            'qed': '<qed>',
            'logp': '<logp>',
            'sas': '<SAS>',
            'tpsa': '<TPSA>'
        }

        sources = []
        props_list = []
        non_normalized_props_list = []
        prop_names_list = []
        props_index_list = []
        temperature_list = []
        scaffold_list = []
        for example in instances:
            prop_names = example['property_name']
            prop_values = example['property_value']
            non_normalized_prop_values = example['non_normalized_property_value']
            temperature = example['temperature']
            # we need to convert the string to a list
            
            # randomly choose the property and the scaffold combinations:
            props_str = ""
            scaffold_str = ""
            props = []
            non_nornalized_props = []   
            props_index = []


            if self.has_scaffold:
                scaffold = example['scaffold_smiles'].strip()
                scaffold_str = f"{self.scaffold_start_str}{scaffold}{self.end_str}"

            props_str = f"{self.property_start_str}"
            for i, prop in enumerate(prop_names):
                prop = prop.lower()
                props_str += f"{prop_token_map[prop]}{self.property_inner_sep}{self.molecule_start_str}{self.property_inter_sep}"
                props.append(prop_values[i])
                non_nornalized_props.append(non_normalized_prop_values[i])
                props_index.append(3 + 4 * i) # this is hard coded for the current template
            props_str += f"{self.end_str}"
            
            source = props_str + scaffold_str + "<->>" + self.molecule_start_str

            sources.append(source)
            props_list.append(props)
            non_normalized_props_list.append(non_nornalized_props)
            props_index_list.append(props_index)
            prop_names_list.append(prop_names)
            temperature_list.append(temperature)
        
        # Tokenize
        tokenized_sources_with_prompt = self.tokenizer(
            sources,
            max_length=self.source_max_len,
            truncation=True,
            add_special_tokens=False,
        )

        # Build the input and labels for causal LM
        input_ids = []
        for tokenized_source in tokenized_sources_with_prompt['input_ids']:
            input_ids.append(torch.tensor(tokenized_source))
        # Apply padding
        input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)

        data_dict = {
            'input_ids': input_ids,
            'attention_mask':input_ids.ne(self.tokenizer.pad_token_id),
            'properties': props_list,
            'non_normalized_properties': non_normalized_props_list,
            'property_names': prop_names_list,
            'properties_index': props_index_list,
            'temperature': temperature_list,
        }

        return data_dict


def smart_tokenizer_and_embedding_resize(
    special_tokens_dict: Dict,
    tokenizer: transformers.PreTrainedTokenizer,
    model: transformers.PreTrainedModel,
    non_special_tokens = None,
):
    """Resize tokenizer and embedding.

    Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
    """
    num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) + tokenizer.add_tokens(non_special_tokens)
    num_old_tokens = model.get_input_embeddings().weight.shape[0]
    num_new_tokens = len(tokenizer) - num_old_tokens
    if num_new_tokens == 0:
        return
    
    model.resize_token_embeddings(len(tokenizer))
    
    if num_new_tokens > 0:
        input_embeddings_data = model.get_input_embeddings().weight.data

        input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)

        input_embeddings_data[-num_new_tokens:] = input_embeddings_avg
    print(f"Resized tokenizer and embedding from {num_old_tokens} to {len(tokenizer)} tokens.")

class MolecularGenerationModel():
    def __init__(self):
        model_id = "ChemFM/molecular_cond_generation_guacamol"
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            padding_side="right",
            use_fast=True,
            trust_remote_code=True,
            token = os.environ.get("TOKEN")
        )

        # load model
        config = AutoConfig.from_pretrained(
            model_id,
            device_map=device_map,
            trust_remote_code=True,
            token = os.environ.get("TOKEN")
        )

        self.model = LlamaForCausalLMWithNumericalEmbedding.from_pretrained(
            model_id,
            config=config,
            device_map=device_map,
            trust_remote_code=True,
            token = os.environ.get("TOKEN")
        )
    
        # the finetune tokenizer could be in different size with pretrain tokenizer, and also, we need to add PAD_TOKEN
        special_tokens_dict = dict(pad_token=DEFAULT_PAD_TOKEN)
        smart_tokenizer_and_embedding_resize(
            special_tokens_dict=special_tokens_dict,
            tokenizer=self.tokenizer,
            model=self.model
        )
        self.model.config.pad_token_id = self.tokenizer.pad_token_id

        self.model.eval()
        
        string_template_path = hf_hub_download(model_id, filename="string_template.json", token = os.environ.get("TOKEN"))
        string_template = json.load(open(string_template_path, 'r'))
        molecule_start_str = string_template['MOLECULE_START_STRING']
        scaffold_start_str = string_template['SCAFFOLD_MOLECULE_START_STRING']
        property_start_str = string_template['PROPERTY_START_STRING']
        property_inner_sep = string_template['PROPERTY_INNER_SEP']
        property_inter_sep = string_template['PROPERTY_INTER_SEP']
        end_str = string_template['END_STRING']
    
        self.data_collator = DataCollatorForCausalLMEval(
            tokenizer=self.tokenizer,
            source_max_len=512,
            target_max_len=512,
            molecule_target_aug_prob=1.0,
            scaffold_aug_prob=0.0,
            molecule_start_str=molecule_start_str,
            scaffold_start_str=scaffold_start_str,
            property_start_str=property_start_str,
            property_inner_sep=property_inner_sep,
            property_inter_sep=property_inter_sep,
            end_str=end_str,
            ignore_index=-100,
            has_scaffold=False
        )

    #@spaces.GPU(duration=20)
    def generate(self, loader):
        #self.model.to("cuda")
        #self.model.eval()
        df = []
        pbar = tqdm(loader, desc=f"Evaluating...", leave=False)
        for it, batch in enumerate(pbar):
            sub_df = dict()

            batch_size = batch['input_ids'].shape[0]
            assert batch_size == 1, "The batch size should be 1"

            temperature = batch['temperature'][0]
            property_names = batch['property_names'][0]
            non_normalized_properties = batch['non_normalized_properties'][0]

            num_generations = 1
            del batch['temperature']
            del batch['property_names']
            del batch['non_normalized_properties']

            batch['input_ids'] = batch['input_ids'].to(self.model.device)
            #batch = {k: v.to(self.model.device) for k, v in batch.items()}

            input_length = batch['input_ids'].shape[1]
            steps = 1024 - input_length

            with torch.set_grad_enabled(False):
                early_stop_flags = torch.zeros(num_generations, dtype=torch.bool).to(self.model.device)
                for k in range(steps):
                    logits = self.model(**batch)['logits']
                    logits = logits[:, -1, :] / temperature
                    probs = F.softmax(logits, dim=-1)
                    ix = torch.multinomial(probs, num_samples=num_generations)

                    ix[early_stop_flags] = self.tokenizer.eos_token_id

                    batch['input_ids'] = torch.cat([batch['input_ids'], ix], dim=-1)
                    early_stop_flags |= (ix.squeeze() == self.tokenizer.eos_token_id)

                    if torch.all(early_stop_flags):
                        break
                    
            generations = self.tokenizer.batch_decode(batch['input_ids'][:, input_length:], skip_special_tokens=True)
            generations = map(lambda x: x.replace(" ", ""), generations)

            predictions = []
            for generation in generations:
                try:
                    predictions.append(Chem.MolToSmiles(Chem.MolFromSmiles(generation)))
                except:
                    predictions.append("")

            sub_df['SMILES'] = predictions[0]
            sub_df['property_names'] = property_names
            sub_df['property'] = batch['properties'][0]
            sub_df['non_normalized_properties'] = non_normalized_properties

            df.append(sub_df)

        df = pd.DataFrame(df) 
        return df
                

    
    
    def predict_single_smiles(self, input_dict: Dict):
        # conver the key to lower case
        input_dict = {key.lower(): value for key, value in input_dict.items()}
        
        properties = [key.lower() for key in input_dict.keys()]
        property_means = [means[prop] for prop in properties]
        property_stds = [stds[prop] for prop in properties]

        sample_point = [input_dict[prop] for prop in properties]
        non_normalized_sample_point = np.array(sample_point).reshape(-1)
        sample_point = (np.array(sample_point) - np.array(property_means)) / np.array(property_stds)
        sub_df = {
            "property_name": properties,
            "property_value": sample_point.tolist(),
            "temperature": 1.0,
            "non_normalized_property_value": non_normalized_sample_point.tolist()
        }

        test_dataset = [sub_df] * 10
        test_dataset = pd.DataFrame(test_dataset)
        test_dataset = Dataset.from_pandas(test_dataset)


        test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, collate_fn=self.data_collator)
        df = self.generate(test_loader)
        new_df = phrase_df(df)
        # delete the condition columns
        new_df = new_df.drop(columns=[col for col in new_df.columns if "condition" in col])

        # drop the rows 
        df = df[df["SMILES"] != ""]

        # convert the measured to 2 decimal places
        new_df = new_df.round(2)

        
        return new_df