Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
7f3de76
1
Parent(s):
dd57ba6
update
Browse files- app.py +1 -1
- llama_customized_models.py +0 -2
- utils.py +2 -4
app.py
CHANGED
@@ -28,7 +28,7 @@ import spaces
|
|
28 |
#property_names = list(candidate_models.keys())
|
29 |
model = MolecularGenerationModel()
|
30 |
|
31 |
-
@spaces.GPU(duration=
|
32 |
def predict_single_label(logp, tpas, sas, qed, logp_choose, tpsa_choose, sas_choose, qed_choose):
|
33 |
input_dict = dict()
|
34 |
if logp_choose:
|
|
|
28 |
#property_names = list(candidate_models.keys())
|
29 |
model = MolecularGenerationModel()
|
30 |
|
31 |
+
@spaces.GPU(duration=120)
|
32 |
def predict_single_label(logp, tpas, sas, qed, logp_choose, tpsa_choose, sas_choose, qed_choose):
|
33 |
input_dict = dict()
|
34 |
if logp_choose:
|
llama_customized_models.py
CHANGED
@@ -130,9 +130,7 @@ class LlamaForCausalLMWithNumericalEmbedding(LlamaForCausalLM):
|
|
130 |
assert len(properties) == b, "The number of properties should be equal to the batch size."
|
131 |
assert len(properties_index) == b, "The number of properties_index should be equal to the batch size."
|
132 |
|
133 |
-
print(input_ids, "input_ids")
|
134 |
embeddings = self.model.embed_tokens(input_ids)
|
135 |
-
print(embeddings, "embeddings")
|
136 |
|
137 |
for i, (props, props_index, embeds) in enumerate(zip(properties, properties_index, embeddings)):
|
138 |
assert len(props) == len(props_index), "The number of properties should be equal to the number of properties_index."
|
|
|
130 |
assert len(properties) == b, "The number of properties should be equal to the batch size."
|
131 |
assert len(properties_index) == b, "The number of properties_index should be equal to the batch size."
|
132 |
|
|
|
133 |
embeddings = self.model.embed_tokens(input_ids)
|
|
|
134 |
|
135 |
for i, (props, props_index, embeds) in enumerate(zip(properties, properties_index, embeddings)):
|
136 |
assert len(props) == len(props_index), "The number of properties should be equal to the number of properties_index."
|
utils.py
CHANGED
@@ -287,9 +287,7 @@ class MolecularGenerationModel():
|
|
287 |
with torch.set_grad_enabled(False):
|
288 |
early_stop_flags = torch.zeros(num_generations, dtype=torch.bool).to(self.model.device)
|
289 |
for k in range(steps):
|
290 |
-
print("batch", batch)
|
291 |
logits = self.model(**batch)['logits']
|
292 |
-
print("logits", logits)
|
293 |
logits = logits[:, -1, :] / temperature
|
294 |
probs = F.softmax(logits, dim=-1)
|
295 |
ix = torch.multinomial(probs, num_samples=num_generations)
|
@@ -354,8 +352,8 @@ class MolecularGenerationModel():
|
|
354 |
# delete the condition columns
|
355 |
new_df = new_df.drop(columns=[col for col in new_df.columns if "condition" in col])
|
356 |
|
357 |
-
# drop the
|
358 |
-
|
359 |
|
360 |
# convert the measured to 2 decimal places
|
361 |
new_df = new_df.round(2)
|
|
|
287 |
with torch.set_grad_enabled(False):
|
288 |
early_stop_flags = torch.zeros(num_generations, dtype=torch.bool).to(self.model.device)
|
289 |
for k in range(steps):
|
|
|
290 |
logits = self.model(**batch)['logits']
|
|
|
291 |
logits = logits[:, -1, :] / temperature
|
292 |
probs = F.softmax(logits, dim=-1)
|
293 |
ix = torch.multinomial(probs, num_samples=num_generations)
|
|
|
352 |
# delete the condition columns
|
353 |
new_df = new_df.drop(columns=[col for col in new_df.columns if "condition" in col])
|
354 |
|
355 |
+
# drop the rows
|
356 |
+
df = df[df["SMILES"] != ""]
|
357 |
|
358 |
# convert the measured to 2 decimal places
|
359 |
new_df = new_df.round(2)
|