Cere-Gemma2-9b / app.py
oguzhandoganoglu's picture
Update app.py
91b1901 verified
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
# Modeli indirme
hf_hub_download(
repo_id="CerebrumTech/cere-gemma-2-9b-tr",
filename="unsloth.F16.gguf",
local_dir="./models"
)
# Yanıt üretme fonksiyonu
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
system_message,
model,
max_tokens,
temperature,
top_p,
top_k,
repetition_penalty,
):
chat_template = MessagesFormatterType.VICUNA
llm = Llama(
model_path=f"models/unsloth.F16.gguf",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=system_message,
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repetition_penalty
settings.stream = True
messages = BasicChatHistory()
for user_msg, assistant_msg in history:
user = {
'role': Roles.user,
'content': user_msg
}
assistant = {
'role': Roles.assistant,
'content': assistant_msg
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
# Arayüz oluşturma fonksiyonu
def create_interface(model_name, description):
return gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="", label="System message"),
gr.Textbox(value=model_name, label="Model", interactive=False),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
],
title=model_name,
description=description,
)
# Açıklama ve arayüz oluşturma
description = """<p align="center">CerebrumTech/cere-gemma-2-9b-tr</p>"""
interface = create_interface('Cere-Gemma-2-9b', description)
# Gradio uygulamasını başlatma
if __name__ == "__main__":
interface.launch()