import spaces import json import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download # Modeli indirme hf_hub_download( repo_id="CerebrumTech/cere-gemma-2-9b-tr", filename="unsloth.F16.gguf", local_dir="./models" ) # Yanıt üretme fonksiyonu @spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], system_message, model, max_tokens, temperature, top_p, top_k, repetition_penalty, ): chat_template = MessagesFormatterType.VICUNA llm = Llama( model_path=f"models/unsloth.F16.gguf", flash_attn=True, n_gpu_layers=81, n_batch=1024, n_ctx=8192, ) provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=system_message, predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repetition_penalty settings.stream = True messages = BasicChatHistory() for user_msg, assistant_msg in history: user = { 'role': Roles.user, 'content': user_msg } assistant = { 'role': Roles.assistant, 'content': assistant_msg } messages.add_message(user) messages.add_message(assistant) stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output yield outputs # Arayüz oluşturma fonksiyonu def create_interface(model_name, description): return gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="", label="System message"), gr.Textbox(value=model_name, label="Model", interactive=False), gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"), gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"), ], title=model_name, description=description, ) # Açıklama ve arayüz oluşturma description = """

CerebrumTech/cere-gemma-2-9b-tr

""" interface = create_interface('Cere-Gemma-2-9b', description) # Gradio uygulamasını başlatma if __name__ == "__main__": interface.launch()