SPO / metagpt /roles /assistant.py
XiangJinYu's picture
add metagpt
fe5c39d verified
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Time : 2023/8/7
@Author : mashenquan
@File : assistant.py
@Desc : I am attempting to incorporate certain symbol concepts from UML into MetaGPT, enabling it to have the
ability to freely construct flows through symbol concatenation. Simultaneously, I am also striving to
make these symbols configurable and standardized, making the process of building flows more convenient.
For more about `fork` node in activity diagrams, see: `https://www.uml-diagrams.org/activity-diagrams.html`
This file defines a `fork` style meta role capable of generating arbitrary roles at runtime based on a
configuration file.
@Modified By: mashenquan, 2023/8/22. A definition has been provided for the return value of _think: returning false
indicates that further reasoning cannot continue.
"""
from enum import Enum
from pathlib import Path
from typing import Optional
from pydantic import Field
from metagpt.actions.skill_action import ArgumentsParingAction, SkillAction
from metagpt.actions.talk_action import TalkAction
from metagpt.learn.skill_loader import SkillsDeclaration
from metagpt.logs import logger
from metagpt.memory.brain_memory import BrainMemory
from metagpt.roles import Role
from metagpt.schema import Message
class MessageType(Enum):
Talk = "TALK"
Skill = "SKILL"
class Assistant(Role):
"""Assistant for solving common issues."""
name: str = "Lily"
profile: str = "An assistant"
goal: str = "Help to solve problem"
constraints: str = "Talk in {language}"
desc: str = ""
memory: BrainMemory = Field(default_factory=BrainMemory)
skills: Optional[SkillsDeclaration] = None
def __init__(self, **kwargs):
super().__init__(**kwargs)
language = kwargs.get("language") or self.context.kwargs.language
self.constraints = self.constraints.format(language=language)
async def think(self) -> bool:
"""Everything will be done part by part."""
last_talk = await self.refine_memory()
if not last_talk:
return False
if not self.skills:
skill_path = Path(self.context.kwargs.SKILL_PATH) if self.context.kwargs.SKILL_PATH else None
self.skills = await SkillsDeclaration.load(skill_yaml_file_name=skill_path)
prompt = ""
skills = self.skills.get_skill_list(context=self.context)
for desc, name in skills.items():
prompt += f"If the text explicitly want you to {desc}, return `[SKILL]: {name}` brief and clear. For instance: [SKILL]: {name}\n"
prompt += 'Otherwise, return `[TALK]: {talk}` brief and clear. For instance: if {talk} is "xxxx" return [TALK]: xxxx\n\n'
prompt += f"Now what specific action is explicitly mentioned in the text: {last_talk}\n"
rsp = await self.llm.aask(prompt, ["You are an action classifier"], stream=False)
logger.info(f"THINK: {prompt}\n, THINK RESULT: {rsp}\n")
return await self._plan(rsp, last_talk=last_talk)
async def act(self) -> Message:
result = await self.rc.todo.run()
if not result:
return None
if isinstance(result, str):
msg = Message(content=result, role="assistant", cause_by=self.rc.todo)
elif isinstance(result, Message):
msg = result
else:
msg = Message(content=result.content, instruct_content=result.instruct_content, cause_by=type(self.rc.todo))
self.memory.add_answer(msg)
return msg
async def talk(self, text):
self.memory.add_talk(Message(content=text))
async def _plan(self, rsp: str, **kwargs) -> bool:
skill, text = BrainMemory.extract_info(input_string=rsp)
handlers = {
MessageType.Talk.value: self.talk_handler,
MessageType.Skill.value: self.skill_handler,
}
handler = handlers.get(skill, self.talk_handler)
return await handler(text, **kwargs)
async def talk_handler(self, text, **kwargs) -> bool:
history = self.memory.history_text
text = kwargs.get("last_talk") or text
self.set_todo(
TalkAction(i_context=text, knowledge=self.memory.get_knowledge(), history_summary=history, llm=self.llm)
)
return True
async def skill_handler(self, text, **kwargs) -> bool:
last_talk = kwargs.get("last_talk")
skill = self.skills.get_skill(text)
if not skill:
logger.info(f"skill not found: {text}")
return await self.talk_handler(text=last_talk, **kwargs)
action = ArgumentsParingAction(skill=skill, llm=self.llm, ask=last_talk)
await action.run(**kwargs)
if action.args is None:
return await self.talk_handler(text=last_talk, **kwargs)
self.set_todo(SkillAction(skill=skill, args=action.args, llm=self.llm, name=skill.name, desc=skill.description))
return True
async def refine_memory(self) -> str:
last_talk = self.memory.pop_last_talk()
if last_talk is None: # No user feedback, unsure if past conversation is finished.
return None
if not self.memory.is_history_available:
return last_talk
history_summary = await self.memory.summarize(max_words=800, keep_language=True, llm=self.llm)
if last_talk and await self.memory.is_related(text1=last_talk, text2=history_summary, llm=self.llm):
# Merge relevant content.
merged = await self.memory.rewrite(sentence=last_talk, context=history_summary, llm=self.llm)
return f"{merged} {last_talk}"
return last_talk
def get_memory(self) -> str:
return self.memory.model_dump_json()
def load_memory(self, m):
try:
self.memory = BrainMemory(**m)
except Exception as e:
logger.exception(f"load error:{e}, data:{m}")