#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Time : 2023/8/7 @Author : mashenquan @File : assistant.py @Desc : I am attempting to incorporate certain symbol concepts from UML into MetaGPT, enabling it to have the ability to freely construct flows through symbol concatenation. Simultaneously, I am also striving to make these symbols configurable and standardized, making the process of building flows more convenient. For more about `fork` node in activity diagrams, see: `https://www.uml-diagrams.org/activity-diagrams.html` This file defines a `fork` style meta role capable of generating arbitrary roles at runtime based on a configuration file. @Modified By: mashenquan, 2023/8/22. A definition has been provided for the return value of _think: returning false indicates that further reasoning cannot continue. """ from enum import Enum from pathlib import Path from typing import Optional from pydantic import Field from metagpt.actions.skill_action import ArgumentsParingAction, SkillAction from metagpt.actions.talk_action import TalkAction from metagpt.learn.skill_loader import SkillsDeclaration from metagpt.logs import logger from metagpt.memory.brain_memory import BrainMemory from metagpt.roles import Role from metagpt.schema import Message class MessageType(Enum): Talk = "TALK" Skill = "SKILL" class Assistant(Role): """Assistant for solving common issues.""" name: str = "Lily" profile: str = "An assistant" goal: str = "Help to solve problem" constraints: str = "Talk in {language}" desc: str = "" memory: BrainMemory = Field(default_factory=BrainMemory) skills: Optional[SkillsDeclaration] = None def __init__(self, **kwargs): super().__init__(**kwargs) language = kwargs.get("language") or self.context.kwargs.language self.constraints = self.constraints.format(language=language) async def think(self) -> bool: """Everything will be done part by part.""" last_talk = await self.refine_memory() if not last_talk: return False if not self.skills: skill_path = Path(self.context.kwargs.SKILL_PATH) if self.context.kwargs.SKILL_PATH else None self.skills = await SkillsDeclaration.load(skill_yaml_file_name=skill_path) prompt = "" skills = self.skills.get_skill_list(context=self.context) for desc, name in skills.items(): prompt += f"If the text explicitly want you to {desc}, return `[SKILL]: {name}` brief and clear. For instance: [SKILL]: {name}\n" prompt += 'Otherwise, return `[TALK]: {talk}` brief and clear. For instance: if {talk} is "xxxx" return [TALK]: xxxx\n\n' prompt += f"Now what specific action is explicitly mentioned in the text: {last_talk}\n" rsp = await self.llm.aask(prompt, ["You are an action classifier"], stream=False) logger.info(f"THINK: {prompt}\n, THINK RESULT: {rsp}\n") return await self._plan(rsp, last_talk=last_talk) async def act(self) -> Message: result = await self.rc.todo.run() if not result: return None if isinstance(result, str): msg = Message(content=result, role="assistant", cause_by=self.rc.todo) elif isinstance(result, Message): msg = result else: msg = Message(content=result.content, instruct_content=result.instruct_content, cause_by=type(self.rc.todo)) self.memory.add_answer(msg) return msg async def talk(self, text): self.memory.add_talk(Message(content=text)) async def _plan(self, rsp: str, **kwargs) -> bool: skill, text = BrainMemory.extract_info(input_string=rsp) handlers = { MessageType.Talk.value: self.talk_handler, MessageType.Skill.value: self.skill_handler, } handler = handlers.get(skill, self.talk_handler) return await handler(text, **kwargs) async def talk_handler(self, text, **kwargs) -> bool: history = self.memory.history_text text = kwargs.get("last_talk") or text self.set_todo( TalkAction(i_context=text, knowledge=self.memory.get_knowledge(), history_summary=history, llm=self.llm) ) return True async def skill_handler(self, text, **kwargs) -> bool: last_talk = kwargs.get("last_talk") skill = self.skills.get_skill(text) if not skill: logger.info(f"skill not found: {text}") return await self.talk_handler(text=last_talk, **kwargs) action = ArgumentsParingAction(skill=skill, llm=self.llm, ask=last_talk) await action.run(**kwargs) if action.args is None: return await self.talk_handler(text=last_talk, **kwargs) self.set_todo(SkillAction(skill=skill, args=action.args, llm=self.llm, name=skill.name, desc=skill.description)) return True async def refine_memory(self) -> str: last_talk = self.memory.pop_last_talk() if last_talk is None: # No user feedback, unsure if past conversation is finished. return None if not self.memory.is_history_available: return last_talk history_summary = await self.memory.summarize(max_words=800, keep_language=True, llm=self.llm) if last_talk and await self.memory.is_related(text1=last_talk, text2=history_summary, llm=self.llm): # Merge relevant content. merged = await self.memory.rewrite(sentence=last_talk, context=history_summary, llm=self.llm) return f"{merged} {last_talk}" return last_talk def get_memory(self) -> str: return self.memory.model_dump_json() def load_memory(self, m): try: self.memory = BrainMemory(**m) except Exception as e: logger.exception(f"load error:{e}, data:{m}")