SPO / metagpt /actions /research.py
XiangJinYu's picture
add metagpt
fe5c39d verified
raw
history blame
11.2 kB
#!/usr/bin/env python
from __future__ import annotations
import asyncio
from typing import Any, Callable, Optional, Union
from pydantic import TypeAdapter, model_validator
from metagpt.actions import Action
from metagpt.config2 import config
from metagpt.logs import logger
from metagpt.tools.search_engine import SearchEngine
from metagpt.tools.web_browser_engine import WebBrowserEngine
from metagpt.utils.common import OutputParser
from metagpt.utils.text import generate_prompt_chunk, reduce_message_length
LANG_PROMPT = "Please respond in {language}."
RESEARCH_BASE_SYSTEM = """You are an AI critical thinker research assistant. Your sole purpose is to write well \
written, critically acclaimed, objective and structured reports on the given text."""
RESEARCH_TOPIC_SYSTEM = "You are an AI researcher assistant, and your research topic is:\n#TOPIC#\n{topic}"
SEARCH_TOPIC_PROMPT = """Please provide up to 2 necessary keywords related to your research topic for Google search. \
Your response must be in JSON format, for example: ["keyword1", "keyword2"]."""
SUMMARIZE_SEARCH_PROMPT = """### Requirements
1. The keywords related to your research topic and the search results are shown in the "Search Result Information" section.
2. Provide up to {decomposition_nums} queries related to your research topic base on the search results.
3. Please respond in the following JSON format: ["query1", "query2", "query3", ...].
### Search Result Information
{search_results}
"""
COLLECT_AND_RANKURLS_PROMPT = """### Topic
{topic}
### Query
{query}
### The online search results
{results}
### Requirements
Please remove irrelevant search results that are not related to the query or topic. Then, sort the remaining search results \
based on the link credibility. If two results have equal credibility, prioritize them based on the relevance. Provide the
ranked results' indices in JSON format, like [0, 1, 3, 4, ...], without including other words.
"""
WEB_BROWSE_AND_SUMMARIZE_PROMPT = """### Requirements
1. Utilize the text in the "Reference Information" section to respond to the question "{query}".
2. If the question cannot be directly answered using the text, but the text is related to the research topic, please provide \
a comprehensive summary of the text.
3. If the text is entirely unrelated to the research topic, please reply with a simple text "Not relevant."
4. Include all relevant factual information, numbers, statistics, etc., if available.
### Reference Information
{content}
"""
CONDUCT_RESEARCH_PROMPT = """### Reference Information
{content}
### Requirements
Please provide a detailed research report in response to the following topic: "{topic}", using the information provided \
above. The report must meet the following requirements:
- Focus on directly addressing the chosen topic.
- Ensure a well-structured and in-depth presentation, incorporating relevant facts and figures where available.
- Present data and findings in an intuitive manner, utilizing feature comparative tables, if applicable.
- The report should have a minimum word count of 2,000 and be formatted with Markdown syntax following APA style guidelines.
- Include all source URLs in APA format at the end of the report.
"""
class CollectLinks(Action):
"""Action class to collect links from a search engine."""
name: str = "CollectLinks"
i_context: Optional[str] = None
desc: str = "Collect links from a search engine."
search_func: Optional[Any] = None
search_engine: Optional[SearchEngine] = None
rank_func: Optional[Callable[[list[str]], None]] = None
@model_validator(mode="after")
def validate_engine_and_run_func(self):
if self.search_engine is None:
self.search_engine = SearchEngine.from_search_config(self.config.search, proxy=self.config.proxy)
return self
async def run(
self,
topic: str,
decomposition_nums: int = 4,
url_per_query: int = 4,
system_text: str | None = None,
) -> dict[str, list[str]]:
"""Run the action to collect links.
Args:
topic: The research topic.
decomposition_nums: The number of search questions to generate.
url_per_query: The number of URLs to collect per search question.
system_text: The system text.
Returns:
A dictionary containing the search questions as keys and the collected URLs as values.
"""
system_text = system_text if system_text else RESEARCH_TOPIC_SYSTEM.format(topic=topic)
keywords = await self._aask(SEARCH_TOPIC_PROMPT, [system_text])
try:
keywords = OutputParser.extract_struct(keywords, list)
keywords = TypeAdapter(list[str]).validate_python(keywords)
except Exception as e:
logger.exception(f"fail to get keywords related to the research topic '{topic}' for {e}")
keywords = [topic]
results = await asyncio.gather(*(self.search_engine.run(i, as_string=False) for i in keywords))
def gen_msg():
while True:
search_results = "\n".join(
f"#### Keyword: {i}\n Search Result: {j}\n" for (i, j) in zip(keywords, results)
)
prompt = SUMMARIZE_SEARCH_PROMPT.format(
decomposition_nums=decomposition_nums, search_results=search_results
)
yield prompt
remove = max(results, key=len)
remove.pop()
if len(remove) == 0:
break
model_name = config.llm.model
prompt = reduce_message_length(gen_msg(), model_name, system_text, config.llm.max_token)
logger.debug(prompt)
queries = await self._aask(prompt, [system_text])
try:
queries = OutputParser.extract_struct(queries, list)
queries = TypeAdapter(list[str]).validate_python(queries)
except Exception as e:
logger.exception(f"fail to break down the research question due to {e}")
queries = keywords
ret = {}
for query in queries:
ret[query] = await self._search_and_rank_urls(topic, query, url_per_query)
return ret
async def _search_and_rank_urls(self, topic: str, query: str, num_results: int = 4) -> list[str]:
"""Search and rank URLs based on a query.
Args:
topic: The research topic.
query: The search query.
num_results: The number of URLs to collect.
Returns:
A list of ranked URLs.
"""
max_results = max(num_results * 2, 6)
results = await self.search_engine.run(query, max_results=max_results, as_string=False)
if len(results) == 0:
return []
_results = "\n".join(f"{i}: {j}" for i, j in zip(range(max_results), results))
prompt = COLLECT_AND_RANKURLS_PROMPT.format(topic=topic, query=query, results=_results)
logger.debug(prompt)
indices = await self._aask(prompt)
try:
indices = OutputParser.extract_struct(indices, list)
assert all(isinstance(i, int) for i in indices)
except Exception as e:
logger.exception(f"fail to rank results for {e}")
indices = list(range(max_results))
results = [results[i] for i in indices]
if self.rank_func:
results = self.rank_func(results)
return [i["link"] for i in results[:num_results]]
class WebBrowseAndSummarize(Action):
"""Action class to explore the web and provide summaries of articles and webpages."""
name: str = "WebBrowseAndSummarize"
i_context: Optional[str] = None
desc: str = "Explore the web and provide summaries of articles and webpages."
browse_func: Union[Callable[[list[str]], None], None] = None
web_browser_engine: Optional[WebBrowserEngine] = None
@model_validator(mode="after")
def validate_engine_and_run_func(self):
if self.web_browser_engine is None:
self.web_browser_engine = WebBrowserEngine.from_browser_config(
self.config.browser,
browse_func=self.browse_func,
proxy=self.config.proxy,
)
return self
async def run(
self,
url: str,
*urls: str,
query: str,
system_text: str = RESEARCH_BASE_SYSTEM,
) -> dict[str, str]:
"""Run the action to browse the web and provide summaries.
Args:
url: The main URL to browse.
urls: Additional URLs to browse.
query: The research question.
system_text: The system text.
Returns:
A dictionary containing the URLs as keys and their summaries as values.
"""
contents = await self.web_browser_engine.run(url, *urls)
if not urls:
contents = [contents]
summaries = {}
prompt_template = WEB_BROWSE_AND_SUMMARIZE_PROMPT.format(query=query, content="{}")
for u, content in zip([url, *urls], contents):
content = content.inner_text
chunk_summaries = []
for prompt in generate_prompt_chunk(content, prompt_template, self.llm.model, system_text, 4096):
logger.debug(prompt)
summary = await self._aask(prompt, [system_text])
if summary == "Not relevant.":
continue
chunk_summaries.append(summary)
if not chunk_summaries:
summaries[u] = None
continue
if len(chunk_summaries) == 1:
summaries[u] = chunk_summaries[0]
continue
content = "\n".join(chunk_summaries)
prompt = WEB_BROWSE_AND_SUMMARIZE_PROMPT.format(query=query, content=content)
summary = await self._aask(prompt, [system_text])
summaries[u] = summary
return summaries
class ConductResearch(Action):
"""Action class to conduct research and generate a research report."""
def __init__(self, **kwargs):
super().__init__(**kwargs)
async def run(
self,
topic: str,
content: str,
system_text: str = RESEARCH_BASE_SYSTEM,
) -> str:
"""Run the action to conduct research and generate a research report.
Args:
topic: The research topic.
content: The content for research.
system_text: The system text.
Returns:
The generated research report.
"""
prompt = CONDUCT_RESEARCH_PROMPT.format(topic=topic, content=content)
logger.debug(prompt)
self.llm.auto_max_tokens = True
return await self._aask(prompt, [system_text])
def get_research_system_text(topic: str, language: str):
"""Get the system text for conducting research.
Args:
topic: The research topic.
language: The language for the system text.
Returns:
The system text for conducting research.
"""
return " ".join((RESEARCH_TOPIC_SYSTEM.format(topic=topic), LANG_PROMPT.format(language=language)))